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Abstract

Inferring a decision tree from a given dataset is a classic prob-
lem in machine learning. This problem consists of building,
from a labelled dataset, a tree where each node corresponds
to a class and a path between the tree root and a leaf corre-
sponds to a conjunction of features to be satisfied in this class.
Following the principle of parsimony, we want to infer a min-
imal tree consistent with the dataset. Unfortunately, inferring
an optimal decision tree is NP-complete for several defini-
tions of optimality. For this reason, the majority of existing
approaches rely on heuristics, and the few existing exact ap-
proaches do not work on large datasets. In this paper, we pro-
pose a novel approach for inferring an optimal decision tree
with a minimum depth based on the incremental generation
of Boolean formulas. The experimental results indicate that
it scales sufficiently well and the time it takes to run grows
slowly with the size of datasets.

Introduction
In machine learning, the problem of classification consists
of inferring a model of a given system from its observa-
tions (also called training examples) that make it possible
to identify which class of a set of classes a new observa-
tion belongs to. When the training examples used to infer a
model are assigned to the classes to which they belong, it
is called supervised learning. Many machine learning mod-
els exist to solve this problem, such as support vector ma-
chines (Cortes and Vapnik 1995), artificial neural networks
(McCulloch and Pitts 1943), decision trees (Breiman et al.
1984). Since inferring such models is complicated and train-
ing examples are generally numerous, most existing infer-
ence algorithms are heuristic in the sense that the algorithms
infer models without any guarantee of optimality.

Although heuristic-based techniques generally work well,
there are often cases where a new example is not correctly
recognized by the model. In the context of critical systems in
which errors are not allowed, such models are problematic.
This precision requirement is frequently associated with the
demand that models must also be understandable. This area,
known as eXplainable Artificial Intelligence (XAI), aims at
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inferring models capable of explaining their own behaviour.
XAI has been the subject of several studies (Goebel et al.
2018; Li et al. 2018; Van Lent, Fisher, and Mancuso 2004;
Angelino et al. 2017), and several events (IJCAI XAI Work-
shop; NIPS IML Symposium; ACM FAT*). One approach
to obtain an explainable model is to use decision trees be-
cause the reasons for classification are clearly defined (Quin-
lan 1986).

To obtain accurate and explainable models, we are inter-
ested in the inference of optimal decision trees. The optimal-
ity of a decision tree is generally defined by the simplicity
of the tree based on the principle of parsimony. The basic
simplicity criteria are the depth of the tree and the num-
ber of nodes. The problem of learning an optimal decision
tree is known to be NP-complete for these two basic crite-
ria but also for several other definitions of optimality (Hyafil
and Rivest 1976; Hancock et al. 1996) and it is also hard
to approximate up to any constant factor under the assump-
tion P 6= NP (Sieling 2008; Alekhnovich et al. 2004). For
these reasons, the majority of known algorithms for inferring
decision trees are heuristics trying to minimize the number
of nodes without guaranteeing any optimality (Kass 1980;
Breiman et al. 1984; Quinlan 1986; Quinlan 2014).

Despite the complexity of the problem and the efficiency
of the first attempts to infer optimal decision trees, two stud-
ies have recently proposed approaches focused on improv-
ing the performance of algorithms inferring decision trees
with a minimum number of nodes (Bessiere, Hebrard, and
O’Sullivan 2009; Narodytska et al. 2018). Bessiere, He-
brard, and O’Sullivan propose a SAT formulation, but ex-
periments show that the method only works for trees of up
to fifteen nodes. Narodytska et al. propose a new SAT for-
mulation that significantly improves the performance of op-
timal decision tree inference. Thus, with their formulation,
Narodytska et al. were able to build a decision tree with a
minimum number of nodes in 13 seconds for the “Mouse”
dataset, while this required 9.6 minutes with the SAT formu-
lation from Bessiere, Hebrard, and O’Sullivan. Narodytska
et al. note that their paper is the first presentation of an opti-
mal decision tree inference method working on well-known
datasets.

In this paper, we also use a SAT solver to infer optimal



trees, but our approach has two differences from the two
aforementioned papers. The first is that we will generate
the Boolean formulas incrementally. Instead of attempting to
process all the training examples at once, we iteratively infer
a decision tree from their subset (initially it is an empty set)
and use active inference to refine it when it is not consistent
with the training examples. The second difference is that we
choose the depth of the tree as a criterion of simplicity. This
criterion of simplicity allows for more efficient Boolean for-
mulations. Hence, our algorithm can process the “Mouse”
dataset in only 20 milliseconds and well-known datasets that
were considered too large to infer optimal decision trees can
now be processed by our algorithm.

Other studies were carried out on a problem similar to
ours: inferring decision trees with a given depth such that
the total classification error on the training examples is mini-
mal (Bertsimas and Shioda 2007; Bertsimas and Dunn 2017;
Verwer and Zhang 2019). These approaches use, as we do,
the depth of the tree as a criterion of simplicity, but address
the problem of complexity by setting a maximum depth. We
show that our approach can infer decision trees with a better
accuracy.

The paper is organized as follows. First, to formalize the
approach, we provide definitions related to decision trees.
Then, we give a new Boolean formulation for passive infer-
ence of a decision tree from a set of training examples. Next,
we propose an incremental way of generating the Boolean
formulas which ensures that the proposed approach scales to
large datasets. Finally, we report several experiments com-
paring our approach to other approaches and summarize our
main findings.

Definitions
Let E = {e0, ..., en−1} be a set of training examples, that is,
Boolean valuations of a set F = {f0, ..., fm−1} of features,
and let E0, ..., Ec−1 be a partition of E into classes. Note that
even if we only consider binary features, we can easily han-
dle non-binary features by encoding them in a binary way. A
non-Boolean feature f that can have x different values can
be represented by x Boolean features: each Boolean feature
represents a value that f can take. Moreover, if the feature
f is ordered, like numbers, then each Boolean feature can
represent the operator ≤ as the following examples shows.

Example 1. Let E be a set of training examples where each
example has a single integer feature f . Let E0 = {(1), (3)}
and E1 = {(4), (5)} be the partition of E into two classes.
Then, we can transform E0 and E1 into E ′0 and E ′1 such that
each example has four Boolean features f ′0, f

′
1, f
′
2, f
′
3. If the

feature f ′0 is true, it means that the example is smaller or
equal to 1 for feature f ; if the feature f ′1 is true, it that the
example is smaller or equal to 3 for feature f , etc. Thus, with
this transformation we obtain E ′0 = { (1, 0, 0, 0), (1, 1, 0, 0)}
and E ′1 = { (1, 1, 1, 0), (1, 1, 1, 1)}.

In the following, we denote by e[f ] the Boolean valuation
of the feature f ∈ F in the example e ∈ E . A decision tree
is a binary tree where each node is labelled with a single fea-
ture and each leaf is labelled with a single class. A decision
tree is said to be perfect if all leaves have the same depth and

all internal nodes have two children. Formally, we denote a
perfect decision tree by T = (V, V ′) where V ∈ F2k−1 is
the set of internal nodes and V ′ ∈ {0, 1, ..., c − 1}2k is the
set of leaves and k is the depth of the tree. We denote by
V [i] the ith node in the tree T and by V [1] the root of the
tree. Then we define V [i × 2] as the left child of V [i] and
V [i× 2+1] as the right child. In a similar way, if i ≥ 2k−1,
we define the leaf V ′[(i−2k−1)×2] as the left child of V [i]
and the leaf V ′[(i − 2k−1) × 2 + 1] as the right child. An
illustration of this encoding is depicted by Figure 1.

In the rest of this paper, we will say that the node v is a
right ancestor of v′ if the right child of v is v′ or an ancestor
of v′ (and inversely for the left ancestor). We will also say
that v′ is a right descendant of v if v is a right ancestor of v′
(and inversely for the left descendant).

V [1]

V [2] V [3]

V [4] V [5] V [6] V [7]

V ′[0] V ′[1] V ′[2] V ′[3] V ′[4] V ′[5] V ′[6] V ′[7]

false true

false true false true

false true false true false true false true

Figure 1: Illustration of nodes index coding.

This way of associating a number with each node and
leaf may appear complicated, but it will be useful for our
Boolean encoding. We will use the semantics associated
with binary coding of node indexes to obtain compact SAT
formulas.

If T is a decision tree, and E is a set of training examples,
we say that T is consistent with E , denoted E ⊆ T , if each
example e ∈ E is correctly classified by T . We also say that
a system or a decision tree T is equivalent to another T ′ if
there is no example classified in different classes by T and
T ′.

Passive Inference
The exact model inference problem consists of inferring a
model equivalent to a given system using observations. The
type of the model to be inferred is initially fixed, and we
assume that there exists a modelling equivalent to the system
to be inferred. There are two types of learning approaches in
this area.

The first type is active learning, where the learning algo-
rithm uses an oracle to help correctly infer the model. Gener-
ally, the learning algorithm requires that the oracle label new
examples and be able to verify if a model corresponds to the
system to be inferred. L* is the most well-known algorithm
in this category for inferring deterministic finite automata
(Angluin 1987). However, such an oracle is often not pos-
sible to have in practice. For this reason, there is a second
category which is passive inference. This category consists



of inferring a model using only a set of examples. Without
oracles, it becomes more difficult to ensure that the inferred
model corresponds to the system. However, by following the
principle of parsimony and inferring a minimal model, it can
generally be shown that if the learning set is representative,
then the minimal model will correspond to the system to be
inferred.

The notion of “representative” is defined by the notion of
a characteristic sample:
Definition 1. Let T be a decision tree with a maximal depth
of k and consistent with the training examples E . We say
that E is a characteristic sample for T if each decision tree
T ′ with a maximal depth k consistent with E is equivalent to
T .

If the models to be inferred are decision trees, and a sys-
tem to be inferred can be represented by a decision tree, a
characteristic sample exists:
Theorem 1. For each decision tree T , there is a character-
istic sample E .

Proof. We can determine a characteristic sample as follows.
Initially, we set E = ∅. Then, while there is a decision tree
T ′ of depth smaller k such that T and T ′ are not equivalent,
we add to E the example e that is classified differently by T
and T ′. Since the number of decision trees with a maximal
depth of k is finite, this procedure terminates.

Note that this theorem still holds when we consider only
the perfect decision trees because for each decision tree there
exists an equivalent perfect decision tree with the same max-
imal depth.

In this section, we focus on inferring a decision tree with
a maximal depth of k, consistent with training examples E .
We will first show how to infer perfect decision trees, and
then decision trees that are not necessarily perfect but have
a fixed maximum number of nodes.

Inferring perfect decision trees of a fixed depth
Our SAT encoding to infer perfect decision trees of a fixed
depth is based on the way the nodes are indexed. As men-
tioned in Section “Definitions”, the index of a node de-
pends on its position in the tree. In particular, the root node
corresponds to the node V [1], and for each node V [i], the
left child corresponds to V [i × 2] and the right child to
V [i × 2 + 1]. This coding has the capability of providing
precise information on the position of a node based on the
binary coding of its index. Indeed, reading the binary coding
of a node from the highest to the lowest weight bit indicates
which branches to take when moving from the root to the
node. For example, if the binary coding of i is 1011, then
the node V [i] is reached by taking the right branch of the
root, then the left branch, and finally the right branch twice.

The idea of our encoding consists of arranging the train-
ing examples in the leaves of the tree while respecting the
fact that all training examples placed in the same leaf must
belong to the same class. Moreover, if an example is placed
in a leaf, then all the right ancestors of that leaf can only
be labelled by features true for that example (and conversely
for the left ancestors).

The encoding idea is formalized using the following types
of Boolean variables.

• Xi,j : If the variable Xi,j is true, then the example ei is
assigned to a leaf that is a right descendant of a node lo-
cated at depth j. If Xi,j is false, then ei is assigned to a
leaf that is a left descendant of that node. Note that with
this semantics on the variables Xi,j , we have the property
that the binary coding (Xi,0Xi,1...Xi,k−1), denoted Xi,
corresponds to the index of the leaf where the example ei
belongs, i.e., if Xi = v, then the example ei is assigned
to the leaf V ′[v]. We also denote by Xi[..a] the number
formed by the binary coding of (1Xi,0Xi,1...Xi,a−1).

• Fi,j : If Fi,j is true, then the node V [i] is labelled with the
feature fj .

• Ci,j : If Ci,j is true, then the leaf V ′[i] is labelled with the
class j.

We then use the following set of clauses to formulate con-
straints that a perfect decision tree of depth k should satisfy.
For each i ∈ [1, 2k − 1], we have the clauses:

Fi,0 ∨ Fi,1 ∨ ... ∨ Fi,m−1 (1)

These clauses mean that each node should have at least one
feature.

For each i ∈ [1, 2k − 1] and all features fa, fb such that
0 ≤ a < b < m, we have the clauses:

¬Fi,a ∨ ¬Fi,b (2)

These clauses mean that each node has at most one feature.

For every i and a such that ei[a] = 0, and each j ∈ [0, k−1],
we have:

Xi,j ⇒ ¬FXi[..j],a (3)

And for every i and a such that ei[a] = 1, and each j ∈
[0, k − 1], we have:

¬Xi,j ⇒ ¬FXi[..j],a (4)

These formulas add the constraint that some features cannot
be found in certain nodes depending on where the training
examples are placed in the decision tree. We use the binary
coding of the index of a leaf to determine which nodes in
the tree are its ancestors. Thus, all the ancestor nodes for
which the right branch has been taken cannot be labelled
with features that must be false (formula (3)). In the same
way, all the ancestor nodes for which the left branch has
been taken cannot be labelled with features that must be
true (formula (4)). Note that it is not trivial to translate these
formulas into clauses, but we show in Algorithm 1 how it
could be done. This algorithm performs a depth-first search
of the perfect decision tree in a recursive way. The variable
q corresponds to the index of the current node and ¬clause
constrains such that Xi corresponds to the index of a q
successor. Each time the algorithm visits a node q, it adds
constraints on the features that can be labelled with this
node based on where ei is placed in the left or right branch
of q. If e1 is placed in the left branch, then q cannot contain a



feature that is true for ei and vice versa with the right branch.

For each ei ∈ Ea with a ∈ [0, c − 1] and each integer v ∈
[0, 2k − 1], we have:

(Xi = v)⇒ Cv,a (5)

And for each ei ∈ Ea, each integer v ∈ [0, 2k − 1], and
a′ 6= a we have:

(Xi = v)⇒ ¬Cv,a′ (6)
These formulas assign the classes to the leaves according to
the placement of the training examples in the decision tree.
Again, since it is not trivial to translate these formulas into
clauses, we show in Algorithm 2 how it could be performed.
This algorithm performs a depth-first search of the perfect
decision tree such that when it reaches a leaf, ¬clauses cor-
responds to the index of that leaf. After that, for each leaf,
the algorithm generates the constraints that if ei is present in
that leaf, then the leaf must have the same class as ei.

Algorithm 1 (GenerateFeatureConstraints)
Input: A new example ei, a clause clause, an index node
q, the depth of the tree lvl already considered. Initially,
clause = ∅, q = 1 and lvl = 0.
Output: Clauses for formulas (3) and (4) for a new example
ei

1: result← true
2: if lvl = k then
3: return result
4: end if
5: for all f ∈ [0,m− 1] such that ei[f ] = 0 do
6: result← result ∧ (clause ∨ ¬Xi,lvl ∨ ¬Fq,f )
7: end for
8: result ← result ∧ GenerateFeatureConstraints(

ei, (clause ∨ ¬Xi,lvl), q × 2 + 1, lvl + 1)
9: for all f ∈ [0,m− 1] such that ei[f ] = 1 do

10: result← result ∧ (clause ∨Xi,lvl ∨ ¬Fq,f )
11: end for
12: result ← result ∧ GenerateFeatureConstraints(

ei, (clause ∨Xi,lvl), q × 2, lvl + 1)
13: return result

Minimizing the number of nodes
A perfect decision tree has the constraint that all leaves have
the same depth. In practice, this constraint leads to a tree
with an unnecessarily high number of nodes. For example,
there may be an imperfect decision tree consistent with train-
ing examples, with the same maximal depth as the minimal
perfect tree, but with fewer nodes. Following the principle of
parsimony, considering a tree with the same depth but fewer
nodes should be a better model.

In this section, we will see how we can add constraints
to set a maximum number of nodes. The idea is to limit the
number of leaves assigned to a class in the perfect tree.
Theorem 2. Let T be a decision tree with a maximal
depth k and MaxNodes nodes consistent with E . Then
there exist a perfect decision tree with depth k and at most
bMaxNodes/2c+ 1 labelled leaves consistent with E .

Algorithm 2 (GenerateClassConstraints)
Input: A new example ei ∈ Ea, a clause clause, a node
number q, an integer lvl and an integer lvlMax. Initially,
clause = ∅, q = 0 and lvl = 0.
Output: Clauses for formulas (5) and (6) for a new example
ei

1: if lvl = lvlMax then
2: result← (clause ∨ Cq,a)
3: for Ea′ 6= Ea do
4: result← result ∧ (clause ∨ ¬Cq,a′)
5: end for
6: return result
7: end if
8: return GenerateClassConstraints(ei, clause ∨

Xi,lvl, q × 2, lvl + 1, lvlMax ) ∧
GenerateClassConstraints( ei, clause ∨ ¬Xi,lvl,
q × 2 + 1, lvl + 1, lvlMax )

Proof. Note that the number of leaves in T is at most
bMaxNodes/2c + 1. We show that the theorem is true by
proposing a procedure that makes the tree perfect without
adding labelled leaves. The procedure works iteratively: if
all leaves are at the same depth k then T is perfect and we
complete the procedure. Otherwise, there is a leaf v that is
less than depth k in the tree. In this case, we replace v with
a node labelled with the same feature as the root of the tree.
One of its children will be v and the other will be a leaf
without a label.

Note that with each iteration, the number of nodes in-
creases strictly, but the maximal depth of the tree can never
exceed k. Thus, the termination of this procedure is guaran-
teed.

Thanks to Theorem 2, we know that searching for a deci-
sion tree with a maximum depth of k and with a maximum
of MaxNodes nodes is equivalent to searching for a perfect
decision tree with a depth of k and limiting the number of
labelled leaves to bMaxNodes/2c+ 1.

To add the constraint of the maximum number of labelled
leaves, we add two types of additional variables. The vari-
ables Ui which are true if a class is assigned to the leaf i,
and the variables Hi,0, Hi,1, ...,Hi,MaxNodes+1 which will
be used to count, with unary coding, the number of leaves la-
belled by a class. The variable Hi+1,j will be true if there are
at least j leaves labelled by a class among the first i leaves.

The clauses encoding the new constraint are as follows:
For each i ∈ [0, 2k − 1] and each class a ∈ [0, c − 1], we
have the clauses:

¬Ci,a ∨ Ui (7)
These clauses assign the true value to Ui if the leaf i is
labelled with a class.

For each i ∈ [0, 2k−1] and each class j ∈ [0,MaxNodes+
1], we have the clauses:

¬Hi,j ∨Hi+1,j (8)

These clauses propagate the fact that if Hi,j is true, then
Hi+1,j is also true.



For each i ∈ [0, 2k−1] and each class j ∈ [0,MaxNodes+
1], we have the clauses:

¬Ui ∨ ¬Hi,j ∨Hi+1,j+1 (9)

These clauses increase the value of Hi+1 by one if Ui is
true. Thus Hi+1,j is true if there is at least j leaves labelled
by class among the i first leaves.

Finally, we assign the start and end of the counter H :

¬H2k+1,bMaxNodes/2c+2 ∧H0,0 (10)

The first assignment prohibits having more than
bMaxNodes/2c + 1 leaves, so MaxNodes nodes.
The second assignment sets the counter to 0.

Proposition 1. The formula for inferring a decision tree
of depth k (and a specific number of nodes) from n train-
ing examples with m features clustered in c classes requires
O(2k×(n+m+c)) literals, and O(2k×(m2+m×n+c))
clauses.

Proof. By inspection of the constraints proposed in this sec-
tion.

It can be noted that the number of literals and clauses,
whether the maximum number of nodes is specified or not, is
of the same order of magnitude. However, finding a tree with
a minimum number of nodes will take more time because it
requires us to search for this number through a dichotomous
search.

Incremental Inference
To alleviate the complexity associated with large sets of
training examples, we propose an approach which, instead
of attempting to process all the training examples E at once,
iteratively infers a decision tree from their subset (initially it
is an empty set) and uses active inference to refine it when it
is not consistent with one of the training examples. While ac-
tive inference usually uses an oracle capable of determining
to which class an example belongs, we assign this role to the
training examples E . Even if such an oracle is restricted be-
cause it cannot guess the class for all possible input features,
we can demonstrate that it leads to an efficient approach for
passive inference from training examples. The approach is
formalized in Algorithm 3. Note that this algorithm can eas-
ily be used to find a perfect decision tree with a minimal
depth. To do this, we can just start with k = 0, and incre-
ment k until a solution is found. When the minimum depth
k is found, we can search among all the decision trees with
a minimum depth k, the one with the least node by calling
this algorithm dichotomously with MaxNodes between 1
and 2k+1 − 1.

Theorem 3. Algorithm 3 returns a decision tree consistent
with E with at most MaxNodes nodes and with maximum
depth k if it exists.

Proof. If the algorithm returns a decision tree, it means that
the condition of line 4 holds: T is consistent with E . More-
over, because T is a solution for the Boolean formula C then

Algorithm 3 (InferDecisionTree)
Input: The maximum depth k of the tree to infer, the maxi-
mal number MaxNodes of nodes of the tree to infer, the set
of training examples E partitioned into c classes E0, ..., Ec−1.
Output: A decision tree consistent with E with at most
MaxNodes nodes and with maximum depth k if it ex-
ists.

1: C ← formulas (1) and (2)
2: while C is satisfiable do
3: Let T be a decision tree of a solution of C
4: if E ⊆ T then
5: return T
6: end if
7: Let e ∈ Ea be an example mislabeled by T
8: C ← C∧GenerateFeatureConstraints(e, ∅, 1, 0)∧

GenerateClassConstraints(e, ∅, 0, 0, k, a)
9: if MaxNodes is defined then

10: C ← C ∧C ′ where C ′ is a set of clauses described
by formulas (7), (8), (9) and (10).

11: end if
12: end while
13: return “No solution”

T is a decision tree with at most MaxNodes nodes and with
maximum depth k.

If the algorithm returns “No solution”, it means that the
formula C is unsatisfiable, and there is no decision tree con-
sistent with E with at most MaxNodes nodes and with the
maximum depth k.

The termination of the algorithm is guaranteed by the fact
that at each iteration, a new example of E is considered.
Thus, when all examples will be considered, we know that
the condition of line 4 will be true.

Benchmarks
We have presented two algorithms to solve two different
problems. The first algorithm, denoted DT depth, finds a
perfect decision tree of minimal depth. It uses Algorithm 3
without defining MaxNodes. The value of k is initially 1,
and while the algorithm is not finding a solution the value k
is increased. The second algorithm, denoted DT size, mini-
mizes the depth of the tree and the number of nodes. It starts
by applying DT depth to learn the minimum depth k re-
quired to find a decision tree consistent with the training ex-
amples. Then it performs a dichotomic search on the number
of nodes allowed between 1 and 2k+1 − 1 to find a decision
tree with a minimal number of nodes.

Our two algorithms were implemented1 in C++ calling the
SAT solver MiniSAT (Eén and Sörensson 2003) and we ran
experiments on Ubuntu with Intel® Core™ CPU i7-2600K
@ 3.40GHz and we limit the memory usage to 2 GB.

We compared our algorithms with the one of Bessiere,
Hebrard, and O’Sullivan (2009), denoted DT2, and the one
of Narodytska et al. (2018), denoted DT1. We refer to the
results they have published. Note that the characteristics of

1See https://github.com/FlorentAvellaneda/InferDT

https://github.com/FlorentAvellaneda/InferDT


the machines and tools they used are similar to ours or even
better for DT1 which uses Intel® Xeon™ 3.50GHz pro-
cessor with a 2009 SAT solver. Note that additional bench-
marks are available at https://github.com/FlorentAvellaneda/
InferDT.

The “Mouse” dataset

Our first experiment was performed on the “Mouse” dataset
that the authors Bessiere, Hebrard, and O’Sullivan shared
with us. This dataset has 70 examples and 45 Boolean fea-
tures and has the advantage of having been used with both
algorithm DT1 and DT2. In Table 1, we compare the time
and accuracy for different algorithms. Each entry in rows
DT size and DT depth corresponds to the average over
100 runs. The first columns correspond to the name of each
algorithm used. The next four columns correspond to infer-
ring a decision tree from the whole dataset. The last column
corresponds the 10-fold cross-validations.

Algo Time (s) expl k n acc.
DT2 577 70 4 15 83.8%
DT1 12.9 70 4 15 83.8%

DT size 0.07 37 4 15 83.5%
DT depth 0.02 33 4 31 85.8%

Table 1: Benchmark for “Mouse” dataset.

By analyzing Table 1, we can notice that our incremen-
tal approach is very efficient on this dataset. Only 37 ex-
amples for DT size and 33 examples for DT depth were
used to build an optimal decision tree consistent with the
entire dataset. Note that even if we disable the incremental
approach and consider the 70 examples in the SAT formula,
our approach is still much faster than DT1 and DT2 with a
resolution time of about 90 ms. We could not compare the
accuracy because this data is missing in the two respective
papers for DT2 and DT1.

The “Car” dataset

Another dataset provided to us and used by the authors
Bessiere, Hebrard, and O’Sullivan and Narodytska et al. is
“Car”. This dataset is much more complicated with 1728 ex-
amples and 21 Boolean features. To the best of our knowl-
edge, no algorithm has been able to infer an optimal deci-
sion tree consistent with the entire dataset. The approach
used by the authors Narodytska et al. simplifies the dataset
by considering only 10% of the data. Thus, they can in-
fer an optimal decision tree consistent with the 10% of
the data selected in 684 sec. Table 2 compares the results
of different algorithms. Each entry in rows DT size and
DT depth corresponds to the average over ten runs. The
first four columns correspond to inferring a decision tree
from the whole dataset. The last column corresponds the 10-
fold cross-validations.

Algo Time (s) expl k n acc.
DT1 684 173 7 23.67 55%

DT size 217 635 8 143 98.8%
DT depth 127 603 8 511 98.8%

Table 2: Benchmark for “Car” dataset.

We can see in Table 2 that out of 1727 examples in the
“Car” dataset, our incremental approach uses less than half
of it. Although this number is still much higher than the
number of examples used by the algorithm DT1, we can
see that our algorithms run faster. Moreover, since our al-
gorithms ensure that the resulting decision trees are consis-
tent with all training examples, we can see that the accuracy
remains very high compared to the DT1 algorithm which
randomly considers only 10% of training examples.

Other datasets
As mentioned in the introduction of this paper, there is a
series of algorithms that address a different but very simi-
lar problem to ours: inferring a decision tree with a given
depth such that the total classification error on the training
examples is minimal. In this section, we compare our results
against these algorithms. The datasets we used are extracted
from the paper of Verwer and Zhang (2019) and are available
at https://github.com/SiccoVerwer/binoct. Table 4 shows re-
spectively for each dataset used, the number of examples
given, the number of features, the number of features when
converted to Boolean and the number of classes.

Dataset |E| features Boolean features classes
iris 113 4 114 3

Monks-probl-1 124 6 17 2
Monks-probl-2 169 6 17 2
Monks-probl-3 92 6 17 2

wine 178 12 1276 3
balance-scale 625 4 20 3

Table 4: Characteristics of the used datasets.

Each dataset corresponds to a 5-fold cross-validation. Ver-
wer and Zhang compare their approach BinOCT ∗ to two
other approaches. The first one is CART (Breiman et al.
1984), run from sciki-learn with its default parameter setting
but with a fixed maximum depth of the trees generated, and
the second one is OCT from Bertsimas and Dunn (2017).
The depth of trees used is between 2 and 4, but we report in
Table 3 the best value among the three depths tested.

It should be noted that only 6 of the 16 datasets present in
the Verwer and Zhang paper could be solved. The reason is
that the decision trees consistent with some datasets are too
large and deep to be inferred. In contrast to the algorithms
to which we compare ours, we cannot set a maximum tree
depth value because all examples must be correctly classi-
fied by the tree we infer.

Note that in Table 3, our algorithms DT depth and
DT size are very fast even when the trees to be inferred
are large. In fact, for the dataset “balance-scale”, our algo-
rithms infer decision trees of depth 8 while the other studies

https://github.com/FlorentAvellaneda/InferDT
https://github.com/FlorentAvellaneda/InferDT


DT depth DT size BinOCT ∗ CART OCT
Dataset time (s) acc. k time (s) acc. n acc. acc. acc.

iris 0.018 92.9% 3 0.03 93.2% 10.6 98.4% 92.4% 93.5%
Monks-probl-1 0.024 90.3% 4.4 0.08 95.5% 17 87.1% 76.8% 74.2%
Monks-probl-2 0.19 70.2% 5.8 9.1 74.0% 47.8 63.3% 63.3% 54.0%
Monks-probl-3 0.03 78.1% 4.8 0.21 82.6% 23.4 93.5% 94.2% 94.2%

wine 0.6 89.3% 3 1.2 92.0% 7.8 92.0% 88.9% 94.2%
balance-scale 50 93.0% 8 183 92.6% 268 78.9% 77.5% 71.6%

Average 85.6% 88.3% 85.5% 82.18% 81.1%

Table 3: Benchmark comparing algorithms DT depth, DT size, BinOCT ∗, CART and OCT .

limit the depth of the tree to 4.
Concerning the accuracy of the trees we inferred, it seems

that when the depth is small (< 5) accuracy is similar for
all approaches. However, when the depth is bigger, then our
algorithms obtain higher accuracy. The most obvious exam-
ple is the dataset balance-scale where we got 93% accuracy
compared to 78.9% for BinOCT ∗.

Artificial dataset
In this last experiment, we evaluated the time required to in-
fer a decision tree according to the number of learning exam-
ples as well as the ability of our algorithms to find decision
trees equivalent to the models used to generate the learning
examples. To carry out this experiment, we randomly gener-
ated 1000 decision trees of a depth 5, with 10 features and 2
classes. We call these trees “generators”, and we used them
to randomly generate learning examples and check if the
models we inferred are equivalent to these generators. We
compare our two algorithms to the well-known heuristics
C4.5 (Quinlan 2014) implemented in the Weka tool (Wit-
ten et al. 2016) under the name of J48. Since we evaluated
the percentage of inferred trees equivalent to generators, we
deactivated the post-pruning, the MDL correction and the
minimum number of instances per leaf in J48.

In Figure 2, we depict with solid lines the average time
used to infer a decision tree and with dotted lines the per-
centage of inferred trees equivalent to generators.

Figure 2: Chart of the average time and accuracy percentage.

In accordance with the principle of parsimony, our algo-

rithms require fewer learning examples than the heuristic
approach to infer models that are equivalent to generators.
In addition, it is notable that the inference time of our al-
gorithms becomes almost constant when a sufficient num-
ber of learning examples are provided. Thus, we find that
our DTdepth algorithm is faster than the J48 heuristic when
the number of learning examples exceeds 1800, even though
with this number of learning examples J48 has only an 80%
chance of inferring trees equivalent to the generators.

Conclusion

We have presented a method that can infer an optimal deci-
sion tree for two definitions of optimality. The first definition
states that a decision tree consistent with the training exam-
ple is optimal if it has a minimum depth. The second defini-
tion of optimality adds the constraint that the tree, in addi-
tion to having a minimum depth, must also have a minimum
number of nodes. Although this optimal decision tree infer-
ence problem is known to be NP-complete, we proposed an
efficient method to solve it.

Our first contribution is an efficient SAT formulation that
allows us to infer perfect decision trees for a fixed depth
consistent with training examples. We have shown that con-
sidering depth as a criterion of simplicity allows a more effi-
cient SAT formula based on a binary coding of the positions
of the nodes in the tree. We have also shown how to add con-
straints in order to set the maximum number of nodes. In this
case, the inferred decision tree will no longer necessarily be
a perfect tree.

Our second contribution addressed the scalability issue.
The previous approach using SAT solver has the disadvan-
tage that the execution time increases significantly with the
number of training examples. Thus, we proposed an ap-
proach which does not process all the examples at once, in-
stead it does it incrementally.

We evaluated our algorithms using various experiments
and compared the execution time and quality of decision
trees with other optimal approaches. Experimental results
show that our approach performs better than other ap-
proaches, with shorter execution times, better prediction ac-
curacy and better scalability. In addition, our algorithms
have been able to process datasets for which, to the best of
our knowledge, there are no other inference methods capable
of producing optimal models consistent with these datasets.
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