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Abstract

The k-undercover Boolean matrix factorization problem aims
to approximate a m × n Boolean matrix X as the Boolean
product of an m × k and a k × n matrices A ◦B such that
X is a cover of A ◦ B, i.e., no representation error is al-
lowed on the 0’s entries of the matrix X . To infer an opti-
mal and “block-optimal” k-undercover, we propose two ex-
act methods based on MaxSAT encodings. From a theoreti-
cal standpoint, we prove that our method of inferring “block-
optimal” k-undercover is a (1 − 1

e
) ' 0.632 approxima-

tion for the optimal k-undercover problem. From a practi-
cal standpoint, experimental results indicate that our “block-
optimal” k-undercover algorithm outperforms the state-of-
the-art even when compared with algorithms for the more
general k-undercover Boolean Matrix Factorization problem
for which only minimizing reconstruction error is required.

1 Introduction
The Boolean Matrix Factorization (BMF) problem consists,
for an m × n Boolean matrix X and an integer k ≤
min(n,m), of finding m × k and k × n Boolean matrices
A and B such that A ◦B is equal to X for as many entries
as possible. The Boolean semiring operator ◦ is matrix mul-
tiplication where the product is logical “AND” and addition
logical “OR”.

When the rows of the matrix X represent instances and
the columns attributes, such a decomposition yields a ma-
trix A that represents the same set of instances using only
k derived attributes and a matrix B that defines these new
attributes in terms of the original ones. Thus, since BMF
summarizes data in terms of these new k attributes, this
factorization has been applied to many areas such as role-
based access control (Vaidya, Atluri, and Guo 2007), multi-
label classification (Wicker, Pfahringer, and Kramer 2012),
network pattern mining (Kocayusufoglu, Hoang, and Singh
2018) and functional interactions in brain networks (Haddad
et al. 2018).

Although many methods have been developed for the non-
Boolean case, these methods fail to work in a Boolean con-
text. For example, it is possible that the well-known Sin-
gular Value Decomposition (SVD) obtains a greater recon-
struction error than a BMF for the same decomposition size
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(Miettinen et al. 2008). For this reason, specific algorithms
dealing with the Boolean context must be developed.

In recent years, many different approaches have been ap-
plied to BMF (Miettinen and Neumann 2020). Represent-
ing BMF as a maximum a posteriori inference problem,
(Ravanbakhsh, Póczos, and Greiner 2016) presented a mes-
sage passing algorithm “Message Passing”, while (Kovacs,
Günlük, and Hauser 2021) introduced the “CG” algorithm
that used mixed integer linear programming. This last paper
also presented a greedy algorithm called “k-greedy”. Still
widely used is also the greedy algorithm “ASSO” from (Mi-
ettinen et al. 2008). As for the “MEBF” algorithm of (Wan
et al. 2020), it used matrix permutations to approximate an
upper triangular-like matrix.

The quality of a BMF solution is usually evaluated in
terms of the reconstruction error, which is the proportion
of entries where A ◦ B differs from X . This considers er-
roneous 0’s and 1’s to be of equal importance. However, in
applications such as access control where an erroneous 1 in
A ◦B would represent a spurious permission, incorrect 1’s
in A ◦B must be avoided. In undercover BMF (also known
as from-below approximation BMF) one hence searches for
a solution A◦B whose 1-entries have this same value in X .

Unexpectedly, undercover BMF algorithms have been
shown to give good approximations compared to gen-
eral BMF algorithms (Belohlavek and Trnecka 2015) even
though BMF allows more candidate factorizations. As for
BMF, different approaches have been applied to undercover
BMF. For instance, Formal Concept Analysis (FCA) has
been used by (Belohlavek and Trnecka 2015) to introduce
the ”GreEss” algorithm. This approach was later improved
upon with the ”IterEss” algorithm (Belohlavek, Outrata,
and Trnecka 2019). Also, the “Tiling” algorithm (Geerts,
Goethals, and Mielikäinen 2004) greedily searches for rect-
angular patterns (tiles). Building on the approach used with
“GreConD”, the “GRECOND+” algorithm (Belohlavek and
Trnecka 2018) adds a greedy step to minimize reconstruc-
tion error. However, this last step will usually not preserve
the undercovering property. Similarly, “PANDA+” (Lucch-
ese, Orlando, and Perego 2013) is not strictly an undercover
BMF algorithm, but it first finds dense initial components
that overcover only a strictly limited amount of entries, be-
fore greedily extending without increasing recovery error.

The contribution of this paper is a MaxSAT approach to



solve the undercover BMF problem. MaxSAT is the op-
timization version of the well-known Boolean Satisfiabil-
ity Testing (SAT) problem. We leverage recent progress in
MaxSAT solving that occurred in the wake of the impressive
developments in SAT solving (Bacchus, Järvisalo, and Mar-
tins 2021). We introduce the notion of block-optimal factor-
ization with efficient algorithms for computing this factor-
ization and show that even if a block-optimal factorization is
a restricted form of undercover BMF, our algorithms outper-
form state-of-the-art undercover and even BMF algorithms.

This paper is structured as follows. First, to formalize the
approach, we provide definitions related to Boolean matrix
factorization (Section 2). Then, we give a MaxSAT encoding
for the k-undercover Boolean matrix factorization, propose
two optimizations and evaluate the performance on synthetic
data (Section 3). Finally, we introduce block-optimal factor-
izations, propose exact methods for finding such a factor-
ization, and compare the results obtained with the classical
approach in the literature (Section 4).

2 Definitions
We denote by Am×n a Boolean matrix A ∈
{0, 1, null}n×m with m rows, and n columns. We use
null to represent missing data and if A ∈ {0, 1}n×m we
say that the matrix A is complete.

We also use the notation Ai,j to represent the entry in
the i-th row and the j-th column and the notation Ai,: and
A:,j , to represent the i-th row and the j-th column of A,
respectively. A submatrix AI,J of A is the matrix obtained
by selecting a subset I ⊆ [1,m] of A’s rows and a subset
J ⊆ [1, n] of A’s columns.

We now formally define the Boolean product of two ma-
trices.
Definition 1. The Boolean product of two complete matrices
Am×k and Bk×n is a matrix (A ◦B)m×n define by:

(A ◦B)i,j =

k∨
`=1

(Ai,` ∧B`,j)

This definition is similar to the classical matrix product,
where the product is replaced by the logical “AND” and ad-
dition by the logical “OR”.

Note that (A ◦ B) can also be written as the union of
products of rank 1 matrices:

(A ◦B) =

k⋃
`=1

(A:,` ◦B`,:)

where (A ∪ B)i,j = Ai,j ∨ Bi,j . The matrix A:,` ◦ B`,:

is also called the (`-th) block of the product. The Boolean
product A ◦B is then the union of its blocks.
Definition 2. A matrix Dm×n undercovers a matrix Xm×n
(denoted D ≤X) if D is a complete matrix such that there
are no i, j such that Xi,j = 0 and Di,j = 1.

An entry Xi,j such that Di,j = 1 is said to be “covered”
by D. We define (A−B), the subtraction operator between
two matrices by:

(A−B)i,j =

{
null if Bi,j = 1

Ai,j otherwise

We denote by |A|1 the number of 1’s in A.
Note that when B ≤ A the i, j-entry of (A − B) is 1

exactly when Ai,j = 1 and Bi,j = 0 and |A−B|1 is equal
to the number of erroneous entries in the reconstruction B
of A.

Definition 3. Two matrices Am×k and Bk×n are an opti-
mal k-undercover of the matrix Xm×n if:

• (A ◦B) ≤X
• ∀A′m×k ∀B′k×n: (A′◦B′) ≤X ⇒ |X−(A′◦B′)|1 ≥
|X − (A ◦B)|1

3 Optimal Undercover Factorization
In this section, we propose a MaxSAT encoding for optimal
k-undercover. We start by giving a simple encoding of the
problem in MaxSAT, then we propose two optimizations.
The first one is a classical optimization which consists in
adding constraints to break the symmetry of the solutions.
The second optimization, which we call cardinality genera-
tion, is to the best of our knowledge, a type of optimization
not found in the literature. Here, we will show that cardinal-
ity generation allows us to gain several orders of magnitude
on the computation time needed to solve the MaxSAT for-
mula.

3.1 MaxSAT encoding
As with SAT instances a MaxSAT instance is specified by a
set of constraints (clauses) that are logical “OR” of Boolean
variables and their negations. MaxSAT also considers some
clauses to be soft and one searches for an assignment of
Boolean values to variables that satisfy all non-soft clauses
while maximizing the number of satisfied soft clauses.

Given a matrix Xm×n, the k-undercover problem can be
encoded in MaxSAT as the set of following clauses.

For every i, j such that Xi,j = 0:

k∧
`=1

(¬Ai,` ∨ ¬B`,j) (1)

These clauses guarantee that (A ◦B)i,j = 0.
For every i, j such that Xi,j = 1:

k∧
`=1

(T `
i,j ⇒ Ai,`) ∧

k∧
`=1

(T `
i,j ⇒ B`,j) (2)

These clauses guarantee that if T `
i,j = 1 then (A◦B)i,j = 1.

Finally, for every i, j such that Xi,j = 1:

¬Si,j ∨
k∨

`=1

T `
i,j (3)

where Si,j are unary soft clauses. These clauses guarantee
that if Si,j = 1 then (A ◦B)i,j = 1.

Note that since clauses (1) guarantee to infer an under-
cover, and since (2) and (3) guarantee to cover Xi,j if
Si,j = 1, then an assignment that maximizes the number
of Si,j = 1 corresponds to a maximal undercover.



3.2 Symmetry breaking
We propose in this section an optimization based on sym-
metry breaking. Symmetry breaking, a well-known practice
of the SAT community (Aloul et al. 2002; Aloul, Sakallah,
and Markov 2006; Brown, Finkelstein, and Purdom Jr 1988),
consists in adding constraints to quickly remove some as-
signments as acceptable solutions. The idea is to reduce the
number of solutions that are equivalent to each other.

In our matrix factorization context, for any solution A◦B
and for all i, j ≤ k, we can switch the i-th column and the
j-th column on the matrix A and switch the i-th row and the
j-th row on the matrix B to obtain a new solution whose
Boolean product remains unchanged.

To avoid this kind of permutation, we impose a lexico-
graphical order on the rows of the matrix B. This can be
performed with the following set clauses.

For every i ∈ [1, k − 1] and j ∈ [1, n− 1]:

(Zi,j ∧Bi,j ∧Bi+1,j)⇒ Zi,j+1 (4)

For every i ∈ [1, k − 1] and j ∈ [1, n− 1]:

(Zi,j ∧ ¬Bi,j ∧ ¬Bi+1,j)⇒ Zi,j+1 (5)

For every i ∈ [1, k − 1] and j ∈ [1, n]:

(Zi,j ∧ ¬Bi,j)⇒ ¬Bi+1,j (6)

And finally, for each i ∈ [1, k]:

Zi,1 (7)

3.3 Generate cardinalities
A recent and efficient algorithm for solving the MaxSAT
problem is the OLL algorithm (Andres et al. 2012). This al-
gorithm originally created for ASP solvers has been adapted
to MaxSAT solvers (Morgado, Dodaro, and Marques-Silva
2014) and is used in tools such as MSCG (Morgado, Ig-
natiev, and Marques-Silva 2014), RC2 (Ignatiev, Morgado,
and Marques-Silva 2019) and EvalMaxSAT (Avellaneda
2020).

The principle of this algorithm is to search for unsatis-
fiable cores (sets of soft clauses that cannot all be satis-
fied at the same time) in order to replace many soft clauses
by few cardinality constraints. The following example illus-
trates this algorithm.
Example 1. Let ϕsoft = {x1, x2, x3} be a set of soft
(unary) clauses and ϕhard = {(¬x1 ∨ ¬x2), (¬x2 ∨
¬x3), (¬x1 ∨ ¬x3)} be a set of hard clauses.

A call to a SAT solver on the set of clauses ϕsoft ∪ ϕhard

will find that the formula is unsatisfiable and an unsatisfiable
core can be {x1, x2}. This means that at least one of the two
clauses x1 or x2 has to be false and the cost of the MaxSAT
formula is at least 1. Thus, we remove x1 and x2 from ϕsoft,
we add the cardinality constraint (x1+x2 ≥ 1) to ϕsoft and
we increment the cost of the formula.

On the second iteration, a SAT solver will find that ϕsoft∪
ϕhard is still unsatisfiable and the core will be {x3, (x1 +
x2 ≥ 1)}. This means that at least x3 has to be false or
x1 + x2 ≥ 2. Thus, we remove x3 from ϕsoft, replace x1 +
x2 ≥ 1 by x1 + x2 ≥ 0, add a new cardinality constraint

(x3 + (x1 + x2 ≥ 1) ≥ 1) and increment the cost of the
formula.

Now, the formula ϕsoft ∪ ϕhard is satisfiable and we can
conclude that the cost of the initial formula is two.

We observe that a call to a SAT solver is necessary to
increment the cost of the formula. Thus, if the cost of the
formula to be solved is high, it implies many calls to a SAT
solver, which, in practice, can take a long time.

In this section, we propose a method to significantly re-
duce the number of SAT calls performed. The idea is to use
the knowledge of the problem modeled by the formula to be
solved in order to quickly find sets of soft clauses in which
only k of the clauses can be satisfied at a time. If at most k
clauses can be satisfied in the set of clauses {c1, c2, . . . , cf},
this means that we can increase the cost of the formula by
f − k, remove the f clauses from the set ϕsoft and add a
cardinality constraint c1 + c2 + · · ·+ cn ≥ k to ϕsoft.

A similar idea has been used by the RC2 solver (Ignatiev,
Morgado, and Marques-Silva 2019), but only for k = 1. The
approach used consists in calling a SAT solver to find in-
compatibilities between soft clauses. When a set of clauses
that are incompatible with each other is found, it generates a
cardinality constraint “AtMost1” and removes these clauses
from ϕsoft. Although this approach is efficient, it has a ma-
jor drawback: calling a SAT solver to find incompatibilities
between clauses can be very costly. In their approach, the
authors limit the search time of the SAT solver by accepting
not to detect some incompatibilities to overcome this draw-
back.

Knowing the problem modeled by the formulas will allow
us to propose a more efficient and general method than the
one used in RC2. In order to find sets of soft clauses for
which only k clauses can be satisfied at the same time, we
simply identify sets of 1’s entries in the matrix to undercover
that are two by two incompatible.

Definition 4. Two entries Xi1,j1 and Xi2,j2 of a matrix
Xm×n are incompatible if Xi1,j1 = 1, Xi2,j2 = 1 and
X contains either Xi1,j2 = 0 or Xi2,j1 = 0.

Now, the key property is that a rank-1 factorization can
cover at most one of two incompatible 1-entries.

Proposition 1. If Xi1,j1 and Xi2,j2 are two incompatible
entries of a matrix Xm×n then for every product of rank-1
matrices (Am×1 ◦B1×n) ≤ X , we have (A ◦B)i1,j1 = 0
or (A ◦B)i2,j2 = 0.

Proof. If (A ◦ B)i1,j1 = 1 and (A ◦ B)i2,j2 = 1, then
Ai1,1 = 1, Ai2,1 = 1, B1,j1 = 1 and B1,j2 = 1. This
implies that (A ◦ B)i1,j2 = 1 and (A ◦ B)i2,j1 = 1 and
therefore that (i1, j1, 1) are not incompatible with (i2, j2, 1).

Furthermore, this implies a bound on how many entries in
a set of two by two incompatible 1 entries can be covered in
a rank-k factorization.

Theorem 1. Let Xm×n be a matrix. If I ⊆ X is a set of
1’s entries in X two by two incompatible, then at most k of
these entries can be covered by a k-undercover.



Proof. By definition, a k-undercover correspond to two ma-
trices Am×k and Bk×n such that A ◦ B ≤ X . Also by
definition, A ◦ B =

⋃k
`=1 D` where D` = A:,` ◦ B`,:.

Since (A ◦ B) ≤ X and D` ≤ (A ◦ B) we know that
D` ≤ X for each ` ∈ [1, k]. By Proposition 1, since all
elements from I are two by two incompatible, each D` can
cover at most one element of I . Thus, at most k elements of
I can be covered by a k-undercover.

Theorem 1 implies that for each set I of elements two
by two incompatible in Xm×n, at most k elements can be
covered by an undercover of rank k. Thus, without loss of
generality, we can remove the soft clauses {Si,j | (i, j) ∈
I} associated with elements from I and replace them by a
cardinality constraint

∑
(i,j)∈I Si,j ≥ k. In Algorithm 1, we

propose a method that performs these substitutions.

Algorithm 1: GenerateCardinalities
Input: A matrix Xm×n, an integer k, a Boolean formula Φ,
and a matrix of soft unary clauses S.
Output: A simplified and equivalent Boolean for-
mula.

1: AllOne← {(i, j) |Xi,j = 1}
2: while true do
3: noComp← {}
4: for all (i, j) ∈ AllOne do
5: if ∀(i′, j′) ∈ noComp : Xi,j′ = 0 ∨Xi′,j = 0

then
6: noComp← noComp ∪ {(i, j)}
7: end if
8: end for
9: if noComp = ∅ then

10: return Φ,S
11: end if
12: AllOne← AllOne \ noComp
13: if |noComp| > k then
14: Φ← (

∑
(i,j)∈noComp

Si,j ≥ k) )

15: Φ← remove Si,j as a soft clause in Φ
16: end if
17: end while
18: return Φ

3.4 Experimentation
All experiments have been performed on Ubuntu 20.04

with Intel® Core™i7-2600K CPU @ 3.40GHz and 12 GB
of RAM.

In this section, we compare the time required to solve ran-
domly generated problems with all MaxSAT solvers com-
peting in the MaxSAT Evaluation 2021 (Bacchus et al.
2021), i.e., MaxHS (Bacchus 2021), CASHWMaxSAT (Lei
et al. 2021), EvalMaxSAT (Avellaneda 2020), UWrMaxSAT
(Piotrów 2021; Piotrow 2020), Open-WBO-RES (Martins
et al. 2021; Martins, Manquinho, and Lynce 2014), Pacose
(Paxian and Becker 2021) and Exact (Devriendt 2021). The
method followed to perform this experimentation is as fol-
lows.

Algorithm 2: OptimalUndercover
Input: A matrix X and an integer k.
Output: Two matrices Am×k and Bk×n such that (A ◦B)
is an optimal k-undercover for X .

1: Initialize the formula Φwith constraints (4), (5), (6), (7).
2: Let Sm×n be a matrix of soft unary clause.
3: for all (i, j) |Xi,j = 0 do

4: Φ← Φ ∧
k∧

`=1

(¬Ai,` ∨ ¬B`,j) {Formula (1)}

5: end for
6: for all (i, j) |Xi,j = 1 do

7: Φ← Φ ∧
k∧

`=1

(T `
i,j ⇒ Ai,`) {Formula (2)}

8: Φ← Φ ∧
k∧

`=1

(T `
i,j ⇒ B`,j) {Formula (2)}

9: Φ← Φ ∧ (¬Si,j ∨
k∨

`=1

T `
i,j) {Formula (3)}

10: end for
11: Φ← GenerateCardinalities(X, k, Φ,S)
12: return MaxSAT (Φ,

∑
i∈[1,m],j∈[1,n] Si,j)

We randomly generate two matrices A100×10 and
B10×100 and assigned the value 1 to each entry with the
probability of

√
1− 10

√
1− 0.1. Thus, ensuring that the

probability of having a 1 in a entry of A ◦ B is 10%. We
then calculate X = (A ◦ B) and remove 10% of entries
randomly.

For k ranging from 1 to 10 we call
OptimalUndercover(X, k) (Algorithm 2) with or
without the GenerateCardinality (Algorithm 1) optimization
and compare the time required by many MaxSAT solvers.
For the sake of clarity, we plot in Figure 1 the times required
to solve the problem for only four MaxSAT solvers.

This experimentation showed that the GenerateCardinal-
ity optimization reduced computation time by several or-
ders of magnitude. We do not compare our tool to others
in this section because we are not aware of any other tool
that can find optimal k-undercover. Note however that the
CG method (Kovacs, Günlük, and Hauser 2021), the only
tool allowing to infer exact BMF, requires many hours, even
with small k (3h30 with k = 2).

4 Block-Optimal Undercover Factorization
To handle large datasets and to be able to deal with larger
ranks, we propose a weaker definition of the optimality of
an undercover that we call block-optimal undercover.

Definition 5. Two matrices Am×k and Bk×n form a block-
optimal k-undercover for a matrix Xm×n if for each p ∈
[1, k], the block (A:,p ◦ Bp,:) is an optimal 1-undercovers
for X −

⋃
` 6=p

(A:,` ◦B`,:).

The key insight is that two matrices A and B form a
block-optimal undercover of X if we cannot find a better un-
dercover by modifying a single block. The advantage of this
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Figure 1: Average execution time over ten runs of Op-
timalUndercover (Algorithm 2) on a randomly generated
dataset using various MaxSAT solvers. The dashed lines cor-
respond to our encoding without the GenerateCardinality
optimization and the solid lines correspond to our encoding
with the optimization.

definition is that one can find a block-optimal undercover
by incrementally improving an initial solution one block at
a time. Moreover, finding an appropriate block consists in
searching for an optimal 1-undercover, a problem that we
are able to solve quickly as we have seen in the previous
section. Naturally, it remains that a better solutions can po-
tentially be found by modifying several blocks as allowed
by the BMF problem. However, we show in practice that
the solutions found with our algorithm are of good qual-
ity compared to general BMF algorithms. Furthermore, al-
though under the P 6= NP assumption, it is not possible to
approximate the k-undercover Boolean matrix factorization
problem with a finite ratio in polynomial time (Miettinen
et al. 2008), we show that a block-optimal k-undercover is a
1
2 -approximation.

Theorem 2. A block-optimal k-undercover is a 1
2 -

approximation for the k-undercover Boolean matrix factor-
ization problem.

Proof. Let X be the matrix to factorize, Â ◦ B̂ be an opti-
mal k-undercover factorization of X and A ◦B be a block-
optimal k-undercover factorization for X . Let #APX =
|A ◦ B|1 be the number of entries covered by the block-
optimal k-undercover.

Note that since A ◦ B are block-optimal, a block corre-
sponds to an optimal 1-undercover. Let bmin be a block of
A ◦B that covers the minimum number of entries not cov-
ered by another block. The block bmin covers at most #APX

k
entries that are not covered by another block. Let bmax be
the block of Â ◦ B̂ that covers the maximum number no of
entries not covered by A ◦ B. Now, no cannot be strictly
greater than #APX

k since otherwise bmax would be a better
1-undercover than bmin, which contradicts the fact that bmin

is an optimal 1-undercover.
It then follows that Â ◦ B̂ covers at most k× (#APX

k ) =
#APX additional entries compared to A ◦ B. Therefore
Â ◦ B̂ covers at most twice as many entries than A ◦ B,
establishing 1

2 -approximation.

Algorithm 3: OptiBlock
Input: A matrix Xm,n and two matrices Am×k, Bk×n such
that (A ◦B) ≤X .
Output: Two matrices that are block-optimal k-undercover
for X .

1: repeat
2: modif ← false
3: for all p = 1 to k do
4: X ′ ←X −

⋃
` 6=p

(A:,` ◦B`,:)

5: Y ,Z ← OptimalUndercover(X ′, 1)
6: if |X ′− (Y ◦Z)|1 < |X ′− (A:,p ◦Bp,:)|1 then
7: A:,p ← Y
8: Bp,: ← Z
9: modif ← true

10: end if
11: end for
12: until modif = false
13: return A,B

4.1 Algorithm to find block-optimal undercover
To find a block-optimal k-undercover of a matrix Xm,n, our
method consists in incrementally improving an initial solu-
tion until reaching a valid solution.

Let Am×k and Bk×n be two matrices such that (A ◦
B) ≤ X . A trivial value for Am×k and Bk×n can be
A = {0}m×k and B = {0}k×n. Then, if A and B are
not a block-optimal k-undercover for X , then there exists
a block A:,p ◦ Bp,: that is not an optimal 1-undercover for
X −

⋃
` 6=p(A:,` ◦ B`,:). In that case we can replace A:,p

and Bp,: to have an optimal 1-undercover and iterate until
we reach a block-optimal k-undercover for X . The pseudo-
code of our method is illustrated in Algorithm 3.
Theorem 3. Algorithm 3 is correct.

Proof. When the algorithm stops, it means that the variable
“modif” is false, i.e., for each p ∈ [1, k], (A:,p ◦ Bp,:) is
an optimal 1-undercovers for X −

⋃
` 6=p(A:,` ◦B`,:). Since

this property corresponds to definition 5, we know that when
we leave the “until” loop, the two matrices A and B are a
block-optimal k-undercover for a matrix X .

Let us now show that the algorithm terminates after a fi-
nite number of loops. Note that the number of 1’s in X
not covered by A ◦ B can be calculated by the equation
|X −

⋃k
`=1(A:,` ◦B`,:)|1 which can also be rewritten as:

|(X −
⋃
` 6=p

(A:,` ◦B`,:))− (A:,p ◦Bp,:)|1

By replacing X −
⋃

` 6=p(A:,` ◦ B`,:)) by X ′ as in Algo-
rithm 3, the equation becomes |X ′ − (A:,p ◦Bp,:)|1. Thus,
when |X ′ − (Y ◦ Z)|1 < |X ′ − (A:,p ◦ Bp,:)|1, by re-
placing A:,p by Y and Bp,: by Z, the number of 1’s in X
not covered by A ◦B strictly decreases. Since at least one
replacement is necessary to not leave the “until” loop, the
number of 1’s covered by A ◦B decreases strictly between
each new “until” loop, guaranteeing the termination of the
algorithm.



Although any block-optimal k-undercover is a 1
2 -

approximation for the k-undercover problem, we show
that a OptiBlock(Xm×n, {0}m×k, {0}k×n) is a (1 − 1

e )-
approximation.

Theorem 4. OptiBlock(Xm×n, {0}m×k, {0}k×n) is a 1−
(1 − 1

k )
k ≤ (1 − 1

e ) ' 0.632 approximation for the k-
undercover Boolean matrix factorization problem.

Proof. Since each block covers a subset of X entries and the
problem is to cover as many entries as possible with k blocks
among the admissible blocks, the problem can be seen as
the Maximum Coverage problem. It is established that the
greedy cover algorithm, which consists of selecting at each
iteration a block that covers the maximum number of 1 enti-
ties not already covered, is a 1−(1− 1

k )
k ≤ (1− 1

e ) ' 0.632
approximation (Hochbaum 1996).

Since when A = {0}m×k and B = {0}k×n, the al-
gorithm OptiBlock(X,A,B) behaves for the first k iter-
ations like the greedy cover algorithm, and after the k-th
iteration, the number of covered entries can only increase,
so it follows that OptiBlock(Xm×n, {0}m×k, {0}k×n) is a
1 − (1 − 1

k )
k ≤ (1 − 1

e ) ' 0.632 approximation for the
k-undercover Boolean matrix factorization problem.

4.2 Using a good initial undercover
We have seen that Algorithm 3 starts with an initial solution
Am×k and Bk×n such that A ◦B ≤ X . Although a trivial
solution consists in using A = {0}m×k and B = {0}k×n,
we propose in this section an efficient algorithm to start with
a better solution. Note that although this algorithm is used
to initialize a solution for OptiBlock, it can also be used
independently as we will see in the experimentation section.

Our approach involves finding an optimal 1-undercover
A:,p and Bp,: with the constraint that a particular entry
Xi,j = 1 has to be covered by A:,p ◦ Bp,:. If Xi,j = 1
is covered by A:,p ◦Bp,:, we know that for each i′ such that
Xi′,j = 0, Ai′,p = 0 and for each j′ such that Xi,j′ = 0,
we have Bp,j′ = 0. Therefore, it is not necessary to con-
sider the entire X matrix and it is sufficient to only keep
rows in {i′ |Xi′,j = 1} and columns in {j′ |Xi,j′ = 1}. In
practice, we choose Xi,j = 1 as a entry to be covered such
that |Xi,:|1 × |X:,j |1 is maximal. The pseudo-code of our
method is illustrated in Algorithm 4.

4.3 Experimentation
Our algorithms have been implemented1 in C++ and in this
section, we evaluate our methods FastUndercover (Algo-
rithm 4), OptiBlock (Algorithm 3) with Am×k and Bk×n
initialized to {0}m×k, {0}k×n and OptiBlock∗ which cor-
responds to first running FastUndercover, then using the
solution found as the initial values of Am×k and Bk×n
for OptiBlock. We have performed experiments on 25
datasets from UCI (Dua and Graff 2017), namely: Audiol-
ogy, Autism Screening Adult, Balance Scale, Breast Can-
cer, Car Evaluation, Chess (King-Rook vs. King), Con-
gressional Voting Records, Contraceptive Method Choice,
Dermatology, Hepatitis, Iris, Lung Cancer, Lymphography,

1See https://github.com/FlorentAvellaneda/UndercoverBMF

Algorithm 4: FastUndercover
Input: A matrix Xm,n and an integer k.
Output: Two matrices Am×k, Bk×n such that (A ◦B) ≤
X

1: A← {0}n×k
2: B ← {0}k×m
3: for p = 1 to k do

4: Let (i, j) ∈ argmax
(i,j)

((
n∑

j′=1

Xi,j′)× (
m∑

i′=1

Xi′,j))

5: I ← {i′ |Xi′,j = 1}
6: J ← {j′ |Xi,j′ = 1}
7: AI,{p},B{p},J ← OptimalUndercover(XI,J , 1)
8: X ←X − (A:,p ◦Bp,:)
9: end for

10: return A,B

Mushroom, Nursery, Primary Tumor, Solar Flare, Soybean
(Large), Statlog (Heart), Student Performance, Thoracic
Surgery, Tic-Tac-Toe Endgame, Website Phishing, Wine and
Zoo. All datasets have been binarized with a one-shot encod-
ing when there were more than two categories in a column,
and remain binary when there are only two categories. The
binarized datasets used are also available in the appendix.

For each dataset, we compute the factorization over three
difference rank value dkmax

4 e×1, dkmax
4 e×2 and dkmax

4 e×
3 where kmax is a trivial rank for the dataset to factorize
(generally the minimum between the number of lines and
the number of columns of the dataset).

Figure 2 shows the time required to execute OptiBlock∗
in solid line, and OptiBlock in dashed line according to the
MaxSAT solver used. The execution time of OptimalUnder-
cover (Algorithm 2) is not shown because the size of the
datasets and the value of k are too large to expect to ob-
tain a solution in a reasonable time. Note however that for
smaller datasets such as Balance, Iris, Vote or Zoo, the al-
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Figure 2: Number x of instances solved in y seconds with
different MaxSAT solvers on many real-world datasets. The
solid lines correspond to OptiBlock∗ and the dashed lines
correspond to OptiBlock.



gorithm OptimalUndercover can find the optimal solution
for small values of k. For example, OptimalUndercover can
find an optimal 7-undercover for the dataset Iris in about 100
minutes, while CG is not able to prove the optimality of the
solution after 5 hours.

We can see that running FastUndercover first to get an ini-
tial solution and then using this initial solution as a starting
point for OptiBlock allows us to gain a few orders of magni-
tude on the execution time. Since the solvers EvalMaxSAT
and Pacose seem slightly more efficient on this problem,
we have chosen one of them (EvalMaxSAT), and have in-
tegrated it in our tool in order to insert the constraints gener-
ated by GenerateCardinalities (Algorithm 1) directly in the
form of cardinality constraints instead of as a set of clauses.
This allows us to save even more computation time and we
will only report the results of this solver for the rest of this
section. In Figure 2 this solver integration version appears
as (EvalMaxSAT internal).

We compare our method to two types of tools: tools that
aim to solve the same problem as us, namely to determine
a k-undercover; and tools for the general Boolean matrix
factorization problem.

We considered the following k-undercover tools:
• “IterEss” (Belohlavek, Outrata, and Trnecka 2019),

which is an extension of “GreEss” (Belohlavek and Tr-
necka 2015).

• “Tile” (Geerts, Goethals, and Mielikäinen 2004), one of
the first effective methods to solve this problem.

• “GreConD+” (Belohlavek and Trnecka 2018), which is
an extension of the popular “GreConD” method (Be-
lohlavek and Vychodil 2010) and can be configured to
calculate k-undercover (rBMF package).

And the following BMF tools:
• “MP” (Ravanbakhsh, Póczos, and Greiner 2016), a mes-

sage passing technique for approximate a BMF.
• “k-greedy” (Kovacs, Günlük, and Hauser 2021), an

heuristic used before calling the ”CG” method.
• “CG” (Kovacs, Günlük, and Hauser 2021), an integer

programming method using CPLEX to find solutions.
CG is an exact method that improves a solution until find-
ing an optimal one. A time budget must be given to obtain
a solution in a reasonable time. In our evaluation, we set
the time budget to twice the time used by OptiBlock∗.

• “Asso” (Miettinen et al. 2008), that is probably one of the
most popular tool for BMF (rBMF package).

• “MEBF” (Wan et al. 2020), which uses matrix permu-
tations in order to approximate an upper triangular-like
matrix.

We have run each of these tools on the 25 datasets with the
three k values discussed above. A detailed table of the results
obtained can be found in the appendix. Table 1 summarizes
these results through two values: the number of times each
tool found a better solution than the other tools (# TOP) and
the total time used by each tool to execute all instances.

First of all, we observe that the time used varies a lot from
one method to another. We distinguish three groups of meth-
ods:

Method # TOP Time (min)
FastUndercover 8 3.5
OptiBlock 29 544
OptiBlock∗ 45 98
IterEss 6 0.4
Tile 7 220
GreConD+ 9 107
MP 14 372
k-greedy 5 59
CG 19 469
Asso 0 96
MEBF 0 4.0

Table 1: Benchmark on 25 real-world datasets with three val-
ues of k (75 cases).

• Fast methods using less than 5 min: FastUndercover, Iter-
Ess and MEBF.

• Medium fast methods using between 5 and 100 min:
OptiBlock∗, k-greedy and Asso.

• Slow methods using more than 100 min: OptiBlock, Tile,
GreConD+, MP and CG.

In the fast group, our algorithm FastUndercover finds bet-
ter quality factorizations, however, IterEss is significantly
faster. In the medium fast group, our OptiBlock∗ method ob-
tains notably higher quality factorizations, even when com-
pared to the slower method. Moreover, although OptiBlock∗
is constrained to find an undercover, this method still finds
better quality factorizations than methods without this con-
straint such as MP or CG.

5 Conclusion
We have presented two exact methods to infer optimal and
block-optimal k-undercover matrix factorizations. Although
these two problems are known to be NP-hard, we proposed
efficient methods to solve them.

Our first contribution is an efficient MaxSAT formulation
for finding optimal k-undercover matrix factorizations. The
main idea is to use the knowledge of the problem to find
unsatisfiable cores in order to replace many soft clauses by
few cardinality constraints. We have shown that this method
allows us to gain several orders of magnitude on the compu-
tation time.

Our second contribution addressed the scalability issue.
We propose a weaker definition of optimality, called block-
optimal, and show that every block-optimal solution is a 1

2 -
approximation of an optimal solution. In order to find such
factorizations efficiently, we propose the OptiBlock∗ algo-
rithm. This algorithm consists in initializing a solution with
our FastUndercover heuristic and then improving this solu-
tion until it is block optimal.

The experimental results show that OptiBlock∗ produces
much better reconstruction errors than other tools in the lit-
erature and within reasonable computation times.



Dataset k
FastUndercover OptiBlock* IterEss Tile GreConD+
Errors Time Errors Time Errors Time Errors Time Errors Time

(number) (sec.) (number) (sec.) (number) (sec.) (number) (sec.) (number) (sec.)

Balance 6 2049 0.1 2049 0.4 2049 0.0 2049 0.0 2049 0.1
12 1299 0.1 1299 0.4 1299 0.0 1299 0.0 1299 0.2
18 549 0.1 549 0.4 549 0.0 549 0.0 549 0.3

Car 6 8006 0.2 7676 14.2 8006 0.1 8006 0.0 8006 0.3
12 4838 0.3 4608 6.5 4838 0.1 4838 0.0 4838 0.6
18 2246 0.4 2060 3.0 2246 0.1 2246 0.0 2246 0.9

Chess 10 11335 1.6 10454 14.9 11332 0.1 10435 0.2 10435 1.9
20 4220 1.8 3023 9.0 3052 0.1 3809 0.3 3809 4.0
30 1346 1.9 453 10.4 453 0.1 1308 0.3 1353 6.5

Cmc 18 3194 0.5 2994 7.1 3114 0.1 3234 0.1 3234 4.3
36 1314 0.6 1104 8.3 1196 0.1 1200 0.1 1200 8.9
54 391 0.6 279 12.6 346 0.1 347 0.1 347 14.1

Flare 11 2027 0.3 1953 1.8 1669 0.1 1699 0.1 1684 1.3
22 284 0.4 241 2.3 429 0.1 354 0.2 346 2.2
33 33 0.4 15 8.0 95 0.1 81 0.2 82 3.6

Heart 68 760 0.4 728 17.4 799 0.6 795 0.0 795 107.6
136 419 0.5 401 47.1 462 0.6 441 0.1 444 206.9
204 222 0.6 208 186.6 248 0.6 231 0.1 234 306.2

Iris 32 288 0.1 282 1.2 284 0.0 287 0.0 282 3.2
64 122 0.1 117 2.9 119 0.0 121 0.0 117 6.8
96 37 0.1 32 10.1 37 0.0 36 0.0 34 10.9

Lymph 14 766 0.1 754 0.5 761 0.0 755 0.1 753 0.4
28 275 0.1 229 1.1 283 0.0 292 0.2 288 0.8
42 73 0.1 33 1.2 83 0.0 103 0.2 94 1.2

Mushroom 28 39560 48.5 31226 1483 33852 2.4 33208 119 33844 176.5
56 12264 53.9 7596 460 9732 2.5 10176 143 9364 337.4
84 2194 50.7 436 587 708 2.6 1554 141 1280 471.7

Nursery 8 73440 5.6 68004 1723 68004 0.7 68004 0.6 69120 4.2
16 35970 9.0 35970 78.0 36216 0.7 36216 0.8 36684 9.3
24 10698 10.0 10698 53.2 11028 0.7 11028 0.9 12708 15.4

Phishing 7 6029 0.3 6029 1.6 6029 0.1 6026 0.1 6029 0.4
14 3043 0.4 2999 5.0 3043 0.1 2937 0.2 3027 0.8
21 1253 0.5 806 3.7 1199 0.1 1172 0.2 1218 1.1

Student 44 3408 0.5 3213 18.3 3413 0.4 3400 6.9 3400 21.6
88 1230 0.6 967 19.8 1223 0.4 1234 7.9 1227 42.9
132 227 0.7 125 33.1 271 0.4 305 7.8 298 69.0

Thoracic 85 662 0.6 626 36.1 647 0.7 647 0.0 652 174.8
Surgery 170 233 0.9 219 100 229 0.7 227 0.0 230 341.3

255 54 1.0 51 201 52 0.7 64 0.1 58 532.5

Tictactoe 7 6068 0.2 6062 7.0 6062 0.0 6062 0.0 6068 0.2
14 3588 0.3 3588 1.4 3588 0.1 3588 0.0 3588 0.5
21 1518 0.3 1518 1.4 1518 0.1 1518 0.0 1518 0.8

Wine 45 1766 0.7 1766 12.0 1862 0.6 1766 0.1 1766 475.5
90 1181 0.9 1181 27.9 1232 0.6 1181 0.1 1181 895.7
135 596 1.0 576 97.6 602 0.6 596 0.2 596 1404.7

Zoo 7 192 0.0 173 0.1 176 0.0 171 0.0 178 0.0
14 86 0.0 48 0.1 52 0.0 66 0.0 63 0.1
21 17 0.0 6 0.1 11 0.0 18 0.0 17 0.2

Table 2: Subset of the results obtained for the undercover Boolean matrix factorization problem. All the benchmarks results are
available on https://github.com/FlorentAvellaneda/UndercoverBMF.



References
Aloul, F. A.; Ramani, A.; Markov, I. L.; and Sakallah, K. A.
2002. Solving difficult SAT instances in the presence of
symmetry. In Proceedings of the 39th annual Design Au-
tomation Conference, 731–736. ACM.
Aloul, F. A.; Sakallah, K. A.; and Markov, I. L. 2006. Ef-
ficient symmetry breaking for boolean satisfiability. IEEE
Transactions on Computers, 55(5): 549–558.
Andres, B.; Kaufmann, B.; Matheis, O.; and Schaub, T.
2012. Unsatisfiability-based optimization in clasp. In Tech-
nical Communications of the 28th International Confer-
ence on Logic Programming (ICLP’12). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.
Avellaneda, F. 2020. A short description of the solver Eval-
MaxSAT. MaxSAT Evaluation 2020, 8.
Bacchus, F. 2021. MaxHS in the 2021 MaxSat Evaluation.
MaxSAT Evaluation 2021, 14.
Bacchus, F.; Berg, J.; Järvisalo, M.; and Martins, R. 2021.
MaxSAT Evaluation 2021: Solver and Benchmark Descrip-
tions. SAT, 2021.
Bacchus, F.; Järvisalo, M.; and Martins, R. 2021. Maximum
Satisfiabiliy. In Biere, A.; Heule, M. J. H.; van Maaren, H.;
and Walsh, T., eds., Handbook of Satisfiability, volume 336
of Frontiers in Artificial Intelligence and Applications, chap-
ter 24, 929–991. IOS Press.
Belohlavek, R.; Outrata, J.; and Trnecka, M. 2019. Factor-
izing Boolean matrices using formal concepts and iterative
usage of essential entries. Information Sciences, 489: 37–49.
Belohlavek, R.; and Trnecka, M. 2015. From-below approx-
imations in Boolean matrix factorization: Geometry and new
algorithm. Journal of Computer and System Sciences, 81(8):
1678–1697.
Belohlavek, R.; and Trnecka, M. 2018. A new algorithm
for Boolean matrix factorization which admits overcovering.
Discrete Applied Mathematics, 249: 36–52.
Belohlavek, R.; and Vychodil, V. 2010. Discovery of op-
timal factors in binary data via a novel method of matrix
decomposition. Journal of Computer and System Sciences,
76(1): 3–20.
Brown, C. A.; Finkelstein, L.; and Purdom Jr, P. W. 1988.
Backtrack searching in the presence of symmetry. In Inter-
national Conference on Applied Algebra, Algebraic Algo-
rithms, and Error-Correcting Codes, 99–110. Springer.
Devriendt, J. 2021. Exact: evaluating a pseudo-Boolean
solver on MaxSAT problems. MaxSAT Evaluation 2021,
12–13.
Dua, D.; and Graff, C. 2017. UCI Machine Learning Repos-
itory.
Geerts, F.; Goethals, B.; and Mielikäinen, T. 2004. Tiling
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