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Abstract—Message Sequence Graphs (MSGs) form a popular
model often used for the documentation of telecommunica-
tion protocols. They consist of typical scenarios of messag
exchanges depicted as partial-orders of events that leaddm
one control state to another. On the other hand Petri nets
are a well-known formalism for distributed or parallel systems
based on the notion of token game. Both approaches profit by
a visual presentation and are the subject of numerous formal
verification techniques and tools.

In this paper we investigate a formalism which provides
MSGs with the notion of token game and extends Petri nets
with both control states and partial orders. Providing Petri
nets with control states corresponds precisely to the modedf
Vector Addition Systems with States (VASSs). Thus we need to
define first a partial-order semantics for VASSs which adopts
the basic features of communication scenarios. To do so we
extend simply the classical process semantics of Petri netd/e
obtain a formal model that enjoys several interesting propéies
in terms of expressiveness and concision.

The addition of control states to Petri nets under the partid-
order semantics leads to undecidable problems. Similarlya
MSGs, one cannot decide in particular whether two given

VASSs describe the same process language. However we show

that basic problems about the set of markings reached along

a vector addition system with states (a VASS), a notion
introduced in [17]. It is well-known that all these models
are computationally equivalent, because they can simulate
each other [23].

The popular model of message sequence graphs (MSGs)
can be regarded as a particular case of VASSs where the
only allowed reactions are the sending and the receipt of
one message from one site to another [4], [8], [13], [15],
[20]. Then each sequence of reactions can be described by
a partial order of events called a message sequence chart
(MSC). Each MSC corresponds to several sequences of
elementary actions which are equivalent up to the reorderin
of independent events. Similarly each sequence of MSCs is
equivalent to several sequences of MSCs. Thus controkstate
are used to focus on particular interleavings of events-n or
der to avoid the state explosion problem due to concurrency.
However there exists so far no way to regard an execution
of a VASS as a partial order of events. Consequently there
is no means to apply techniques or tools for Petri nets
to the analysis of MSGs. In this paper we study a partial

the processes of a VASS, such as boundedness, covering andorder semantics for VASSs in such a way that MSGs can

reachability, can be reduced to the analogous problems for &ri
nets. This relies on a new technique that simulates all prefes
of all processes. In this way Petri net tools can be used to viéy
the properties of a VASS under the process semantics.

We present also a technique to check effectively any MSO
property of these partial orders, provided that the given
system is bounded. This enables us to tackle more verificatio
problems and subsumes known results for the model checking
of MSGs. All algorithms presented in this paper have been
implemented in a prototype tool available on-line.

Keywords-Petri nets, vector addition systems with states,
non-branching processes, message sequence charts, compos
tional message sequence graphs, reachability, model-chéagy,
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INTRODUCTION

effectively be regarded as a particular case of VASS. We
obtain a framework that allows for counters and message
losses as opposed to most works on MSCs in the literature.
We present in Section | a partial order semantics for
VASSs which extends the usual process semantics of Petri
nets. The approach is simple and natural. First we consider
the set of firable computation sequences of a VASS and sec-
ond we define the processes that represent a given sequence.
Then each process describes some causal dependencies
between events which are no longer linearly ordered. In
this way, message sequence graphs are embedded in the
framework of VASSs. However, one specific feature of the
process semantics is that a computation sequence can yield
several non-isomorphic processes depending on the order

Consider a set of reactions that take place among a collegdentical particles are consumed. Along this paper, wel shal

tion of particles such that each reaction consumes a multisexhibit few other facts which make clear that the model
of available particles and produces a linear combinatiorof VASS is more general and more difficult to handle than
of other particle types. This kind of framework can be MSGs.

formalized by a vector addition system [18] or, equivalgntl It is easy to prove that checking the inclusion (or the
a (pure) Petri net [23]. Consider in addition some controlequality) of two process languages given by two VASSs
state which determines whether a reaction can occur or nois undecidable by a reduction to the universality problem
and such that the occurrence of a reaction leads to a possiblly Mazurkiewicz traces [24, Theorem 1V.4.3]. This basic
distinct control state. Then the model becomes formallyobservation illustrates the computational gap between Pet
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nets and VASSs under the process semantics because these lz+y

two problems are decidable for Petri nets.This shows also g

that the analysis of the partially ordered executions of a p::l'Dx+zQ(r:y+sz
VASS does not boil down to the verification of a Petri net q

in general, in spite of the well-known simulation of a VASS
by a Petri net. However we present in the rest of this paper
several new techniques to check properties of a VASS under

Fic. 1. A PNS with two control states

the process semantics. ’ ‘—, )}

A key verification problem for MSGs is to detect channel POt
divergence, i.e. to decide whether the number of pending ) HO
messages along an execution is unbounded [4], [8]. This ;pil' c

problem is NP-complete. An analogous problem in the more
general setting of VASSs is the prefix-boundedness problem.
It consists in checking that the set of markings reached by
prefixesof processes is finite. We present in Section Il a

technique to solve this problem by means of a reduction

to Petri nets. We stress that our construction differs fromVith states as a minimal framework which includes both
the usual simulation of a VASS by a Petri net becausd €tri nets and VASSs. Thus Petri nets are regarded as Petri

the latter does not preserve prefix-boundedn®s obtain ~ Nets with states provided with a single state whereas VASSs

that prefix-boundedness is computationally equivalenhéo t &€ Simply Petri nets with states usipgre transition rules,
boundedness problem for Petri nets and requires expohenti@ly- Next we introduce the notions of firable computation
space [12]. This result exhibits an interesting complexitySeéduence, reachable marking, and (non-branching) process
gap between MSGs and VASSs. It shows that algorithms t&S s!mple ger]erallzauon_s of the classical definitions & th
check properties of MSGs need to be improved in order tdestricted setting of Petri nets. _

deal with the more expressive framework of VASSs. Other For simplicity’s sake, for any mapping : A — B be-
basic decision problems for the markings reached by prefixedveen two finite setsl and B, we shall denote also by the

are of course interesting. We show in particular that thehatural mapping’ : A* — B* from words overA to words
reachability and the covering of a given marking by prefixes®ver B and the mapping : N4 — N” from multisets over

can be solved using the same method. A to multisets overB such thatf(u) = >, 4 #(a) - f(a)

The model-checking problem for MSGs against monadid©r €ach multisej: G_NA- Moreover we will often identify
second-order logic (MSO) was investigated first in [19]. As@ SetS with the multisetyus for which us(z) =11if z € S
opposed to earlier works [4], formulas are interpreted or@Ndus(z) = 0 otherwise.
the partially ordered scenarios accepted by the MSGs. Thlﬁ\. Petri net with states
problem was proved decidable for the whole class of safe ) )

MSGs [20] (see also [13]). Each safe MSG can be regarded We borrow from the setting of Petri nets the abstract
as a bounded VASS. However a safe MSG can describe gdtetion of places which can represent different kinds of
infinite set of markings because the reordering of events caf®mponents within a system: A local control state of a se-
produce an unbounded number of pending messages withfential process, a communication channel, a sharedeggist
channels: In other words, a safe MSG may be divergenf Particle type, a molecule in a chemical system, etc. We
We present in Section Il a technique to check effectivelyl€t P’ denote a finite set of places throughout this paper.
that all processes of a given bounded VASS satisfy a gived\S usual a multiset of places is calledvarkingand it is
MSO formula. We shall explain in details why this result "egarded as a distribution edkensin places. Further we fix
subsumes, but cannot be reduced to, previous works on tfefinite setA of rule names

model-checking of MSGs. A transition rule (or a reaction) is a means to produce

Due to the page limit, all proofs are omitted but they areN€W tokens in some places by consuming tokens in some
available in the full paper [5]. The algorithms presented inOther places. Formally eule is a tripler = (A, a, 3) where
this paper have been implemented in a prototype tool [3] € A is arule name and, 3 € N* are markings called the
which is built on TINA [2] for the reachability properties guard and theupdaterespectively. Such a rule is denoted

FIG. 2. A labeled causal net and a prefix

and MONA [1] for the MSO model-checking. by A : a0 8. It means intuitively that a multiset of. tokens
« can be consumed to produce a multiset of tok&ns an
I. MODEL AND SEMANTICS atomic way. Different rules can share the same guasshd

The goal of this section is to extend the usual proces$he same updatg. That is why we use here rule names to
semantics from Petri nets to VASSs. In order to avoidd|st|ngu|sh between similar but distinct rules. For eade ru

repetitive definitions we introduce the model of Petri nets” = (A, a,3), we put®r = o andr® = §.
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Definition 1.1: A Petri net with stategfor short: A PNS)
over a set of rules® is an automato$ = (Q,?, —, fin)
where( is a finite set of states, with a distinguished initial
stater € Q, —C Q x R x Q is a finite set of arcs labeled
by rules, andu;, € N” is some initial marking.

Let8 = (Q,2, —, uin) be a Petri net with states. A labeled
arc (q1,7,q2) €— will be denoted byg; —— ¢2. A rule
sequence = ry...r, € R* is called acomputation sequence
of 8 if there are stateg, ..., ¢, € @ such that = ¢, and
for eachi € [1,n], gi—1 %, ¢;. These conditions will be
summed-up by the notation -~ ¢,. For instance,(p :
x0z+2)-(c:y+z0y)-(p:xz0x+2)-(c:y+z0y)is

a computation sequence of the PNS with two states depicte

in Fig. 1. We denote by O8) the set of all computation
sequences a$.

A rule sequences r..rn, € R* is firable from a
marking p if there are multisets of places, ..., ., such
that 4o = p and for eachk € [1,n|: ux—1 > °*rr and
e = pr—1 — °ri +ry. This means intuitively that each rule
from s can be applied from the markingin the linear order
specified bys: Each ruler;, consumes$r;, tokens fromuy_
and producesy;, new tokens which yields the subsequent
multiset . Then we say thaf, is reached by the rule
sequence from the markingu. We also say that leads to
un. We denote by FCS) the set of alffirable computation
sequences d. A marking isreachablein $ if it is reached
by a firable computation sequence &f A PNS is said to
be boundedif the set of its reachable markings is finite.

B. VASS, Petri net and causal net

Originally introduced in [17], the notion of aector
addition system with stateffor short: A VASS) can be
formally defined in several slightly different ways. In this
paper, &VASSs simply a PNS such that each ruiéabeling
an arc ispure, which means that for all places € P,
*r(p) x r*(p) = 0. This amounts to require that(p) > 1

lx +y

p:z0 r+:©0©c:y+sz
Fig. 3. A PNS with a single state

FIG. 4. and the corresponding Petri net

we put®p =3, . Wi(t,p) -t andp® = >, . Wi(p,t) -t
fgr each place € P.

Let N = (P, T, W, uin) be a Petri net. We will regard\(
as a PNSSy with the same set of placed and the same
initial marking. MoreovesSy is provided with a single state
1 such that each transitione T is represented by a self-loop
labeled arc: —— 1 wherer = (t,°¢,t*). In this way, the
class of Petri nets is faithfully embedded into the subatdiss
PNSs provided with a single state such that each transition
carries a rule with a distinct rule name. For instance the PNS
from Fig. 3 corresponds to the Petri net from Fig. 4.

If the weight functionlV takes only binary values then it
is often described as a flow relatidhC (P x T)U(T x P)
where (z,y) € F if W(z,y) = 1. Further 't denotes the
transitive closure off".

Definition 1.3:[11], [27] A causal netis a Petri net
K = (B, E, F, pmin) Whose places are callecbnditions
whose transitions are calleventsand whose weight func-
tion takes values in{0,1} and is represented by a flow
relationF' C (B x E)U(E x B) which satisfies the following
requirements:

1) the netis acyclic, i.e. for alt,y € BUE, (z,y) € F'T™
implies (y,z) ¢ FT.

2) the conditions do not branch, i@b| < 1 and|b®| < 1
for all b € B.

impliesr*(p) = 0 and vice versa. For this reason each rule 3) the minimal conditions correspond to the initial mark-

r in a VASS can be represented by a veator Z” where
v(p) = r*(p) — *r(p) for all p € P. We explain at present
why we can identify the well-known formalism of Petri nets
as particular PNSs provided with a single state.
Definition 1.2: A Petri net is a quadruple N
(P, T,W, uin) where
o P is a finite set of places an@ is a finite set of
transitions such thaP N T = 0;
o« Wisamap from(P x T)U (T x P) to N, called the
weight function
e uin IS @ map fromP to N, called theinitial marking.

ing: For allb € B, pumin(d) = 1 if *0 = (¢ and
tmin(b) = 0 otherwise.

The transitive and reflexive closufé of the flow relation
Fin a causal nefC = (B, E, F, umin) Yields a partial order
over the set of event®&. A configurationis a subset of
eventsH C FE that is downwards closed, i.e!F*e and
e € H imply ¢/ € H. Each configuratio{ defines gorefix
causal netCy whose events are precisely the events fildm
and whose conditions consist of the minimal condition& of
(with respect to the partial order relatidit) and all places
related to some event fromi. For each class of labeled

We shall depict Petri nets in the usual way as in Fig. 4: Blackcausal net€, we denote byPref (L) the class of all prefixes
rectangles represent transitions whereas circles ramreseof all labeled causal nets frouf.
places; moreover tokens in places describe the initial mark

ing. Given a Petri nelN = (P, T, W, ui,) and a transition
teT, *t=>5 pWi(pt)-pis the pre-multisetof ¢ and
t* =3 ,cpW(tp) - pis the post-multisetof ¢. Similarly

C. Process semantics of a PNS

In this paper we are interested in a semantics of PNS
based on causal nets which is a direct generalization of the
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process semantics of Petri nets [11], [14], [27]. A process i+j+n-w

of a PNSN is a causal net né€ in which each condition itwhi y, J+d0j
of K is labeled by a place dN and each event ok is
labeled by a transition dN. The process semantics of Petri
nets characterizes the labeled causal nets that describe an
execution of a given Petri net. For instance the labeledataus
net K from Fig. 2 depicts a process of the Petri defrom

Fig. 4.

The following definition explains how processes are de-
rived from a given rule sequence. Next the processes of a ®© ® @
PNS will be defined as the processes of its firable compu-
tation sequences (Def. 1.5).

Definition 1.4: Let P be a set of places\ be a set of rule
names, and? be a set of rules oveP andA. A processof
a rule sequence = r;...r,, € R* from a markingy € N¥

6)
idi+d @—>=Fj+d0j
. . i i —==j0j+a
consists of a causal nét = (B, E, F, pimin) With n events et © Jee

q2

FiG. 5. Sliding window protocol

i+wdi

Time

e1, ..., ey provided with a labelingr : BUE — PUA such

that the following conditions are satisfied: \ iHitw
@ @
1) n(b) e Pforallbe B, m(e) € A forall e € E, and
T(fbmin) = 1; FiG. 6. A process withh = 1

2) ri = (mw(e;), m(%e;), m(e;®)) forall i € [1,n];

3) e;Fte; impliesi < j for any twoi, j € [1,n].
We denote byfs],, the class of all processes sffrom . D. From compositional MSGs to PNSs
In this definition the mapping denotes the labeling of The formalism of compositional message sequence graphs
and its natural extension to multisets. The first condition(cMSGs) was introduced in [15] in order to strengthen the
asserts that the initial marking of the causal net describesxpressive power of MSGs. As opposed to usual MSGs,
the markingyu; moreover each condition is associated withcMSGs are built on components MSCs in which unmatched
some place and each event corresponds to some rule nansend or receive events are allowed. It was argued in [15] that
The second condition requires that the label, the pre-gbt arsimple protocols such as the alternating bit protocol can be
the post-set of each event coincide with the name, the guamdescribed by cMSGs but not by MSGs. With no surprise
and the update of the corresponding rule. Finally the lastMSGs can be regarded as a particular case of VASS under
property ensures that the total order of rules rorresponds  the process semantics.
to an order extension of the partial order of eventsin Consider a distributed system consisting of alsef sites
Consequently any subset of evefits, ..., ¢, } is downwards and a setK’ of communication channels between pairs of
closed. Moreover the prefix causal nEt corresponding sites. The behaviour of such a system can be specified by a
to the configuratior{es,...,e,_1} is a process of the rule PNS over the seP = I U K of places such that the sending
sequence...r,,_1 from the same marking. of a message from sité to site j within the channek; ;

Let H be a configuration of a process¢. =  fromito jis encoded by a rulé[ i+ k; ; and the receipt
(B, E, F, imin, ™) Of @ rule sequence from p. Let Byax of such a message is encoded by a rule k; ; O j. Then
be the set of maximal conditions of the prefy; w.r.t. F*.  we require that the initial marking contains a single token
Then the multiset of places(B.x) is called themarking  in each place € I. Such a PNS can actually be regarded
reached byKy and we say thaky leads to the marking as a compositional message sequence graph. The semantics
7(Bmax)- L€t sy be a linear extension of the events from of cMSGs consists of message sequence charts which are
H. Then it is clear that the rule sequeneésy) is firable  simply a partial order of events obtained from a process by
from p and leads to the marking(B,.x); moreoverKy is ~ removing all conditions.
a process ofr(sg) from p. Example 1.6:The PNS from Figure 5 describes a sim-

Definition 1.5: Let § be a PNS with initial markingui,. plified sliding window protocol used to transmit data from
A process 0f is a process of a computation sequencg of a serveri to a clientj. The maximal number of missing
from pi,. We let[8] denote the class of all processesSof —acknowledgments is specified by theinitial tokens in the
Thus [8] = USGCS(S) [[S]]mn' It is easy to check that the placew ('Fhe window). The system behaviour consists of
processes of a PNS provided with a single state are precisefiree basic steps.
the processes of the corresponding Petri net w.r.t. thelusual) The server sends a new data formalized by a tek#n
process semantics [27]. some tokenw is available: It consumes firstwa token:



Checking partial-order properties of vector addition systems with states 5

i+ w [ ¢ and next sends a new datdl 7 + d. @t Tore(@) O Tout(z) + Teur(x) lwpre(w) + Tpre(y)
2) The client receives a data and returns an acknowledg- ¥ mere(v) 0 msu(y) + Teu(y)
ment formalized by a tokea: It consumes first a data: 2 More() O Mau2) F en(2)
j+d0 j and ngxt produces the ackd j + a. D¢ o) O o) + Torel2)
3) The server receives an acknowledgment and increments P meui(z) O Tsu(2) + mou(2)
the window size: First the ack is consumeéd: o 0 ¢
. . . x: 7"'pre(»’v) 0 7suf(z) + meur(z)
and then a new tokew is releasediJ i + w. Y Torely) O Toutly) + Tou(y)
A typical process of this system with = 1 is depicted in # : Mpre(2) 0 Tisur(#) + Teu(2)
Figure 6. It is clear that this system is bounded.
Since counters are prohibited in MSGs, any safe cMSG
equivalent to the PNS from the above example needs

distinct states. Its size is thus exponential w.r.t. the sit . .
: : - : by Fig. 7 where the PN8° resulting from the PNS from
the PNS, provided that is encoded in binary. In this way Fig. 1 is depicted. Intuitively the PNS° is made of two

a bounded PNS can be exponentially more concise than an~". £S that share th t of stat d that .
equivalent safe cMSG. copies 0 at share the same set of states and that are in

charge of executing on the fly events from the prefix or from
Il. CHECKING REACHABILITY PROPERTIES OF PREFIXES the suffix respectively. Additionally some new loop labeled
In this section we investigate three basic verification2rcS allow tokens to move from the prefix to the suffix:
problems about the set of markings reachedpbsfixesof This transfer is tracked by particular cut places in order to
processes: Boundedness, covering and reachability. We shd€Present the marking reached by the resulting prefix.
how to reduce these problems to the particular case of Petri 1€ PNS8® makes use of three disjoint sets of places:
nets in such a way that all complexity results extend from’ pre: Psut Feur Which are copies of the set of placés of
Petri nets to PNSs under the process semantics. 8. We let mpre : P — Ppre, msut + P — Pour, and mou
Definition 2.1: A marking . is prefix-reachablén a PNS £ — Feu be the bijections that map each place frdo
$ if there exists a prefix of a process 8fwhich leads to  the corresponding place ifiyre, Pow and Psr respectively.
the marking. These mappings extend naturally to mappings from multisets
Thus any reachable marking marking is prefix-reachable. Yet® multisets. The initial marking:, of 8° is the multiset
the set of prefix-reachable markings can differ from the set‘in = Tpre(fin)- _ _ _
of reachable markings in general. For instance, each psoces 1€ PNS8° shares withs its set of states) and its
of the PNS from Fig. 1 leads to a marking with at most 3|n|t|al state:. It consists of three_ d!510|nt sets of labeled arcs:
tokens whereas prefixes of these processes lead to infinitefy “pre: —suf, —cut. The restriction of$° to the labeled
many distinct markings (see in Fig. 2 a prefix of a proces€cS T0M—pre and to the places fromf. yields a PNS
which leads to a marking with 4 tokens). Consequently thisSpre ISOMOrphic to8. Thus for each labeled agg — ¢ in
PNS is bounded but not prefix-bounded. In the particula With r = (a, *r,7*) there exists some labeled ac——pre
case of Petri nets, however, any prefix-reachable marking ig2 With s = (a, mpre(*r), Tpre(r*)). Similarly the restriction
reachable, because the class of processes is prefix-clos@d.S° to the labeled arcs from—s,s and to the places from
Thus the problems we study in this section are well-knownPsut yields a PNSSg ¢ isomorphic toS, except that its initial
for Petri nets but new for Petri nets with states. marking is empty: For each labeled ag¢ —— ¢ in §
The first basic problem we consider is the prefix-With r = (a,*r,r*) there exists some labeled ayc ——suf
boundedness problem, which asks whether the set of prefixe With s = (a, Tsuf(*r), msuf(r®)). The set of labeled arcs
reachable markings of a given PNSis finite. We propose —cut consists of a self-loop ——ut ¢ for each state and
in this section a linear construction of a PNS from §  each placey € P; this labeled arc allows to move a token
such that$ is prefix-bounded if and only i§° is bounded. from the placempye(p) to the placers,(p) and to keep track
Since the boundedness &f boils down to the boundedness of that transfer in the placecu(p), i-€. *s = mpre(p) and
of a Petri net, we get that the prefix-boundedness problem® = msuf(p) + mcut(p). Note that tokens inP.,; cannot be
for PNSs is computationally equivalent to the boundednessonsumed.
problem of Petri nets. Further we show that this technique Intuitively, for any processC of § and for any prefixc’
apply to other similar basic problems about prefix-reaahabl of X, the PNSS° can simulate a computation sequence of

C: Wpfe(y) + Wpre(z> g 7Tpre<y)
c: ﬂ'suf(?}) + 7‘—Suf(z) O Wsuf(?/)

FIG. 7. Verification of prefix-reachable markings

markings, namely covering and reachability. which corresponds té in such a way that each event from
] ) . the prefix K’ corresponds to the occurrence of a labeled
A. From Petri nets with states to Petri nets arc from oe and each event from the suffik \ K’

Let S = (@, —,un) be a fixed PNS. We build a corresponds to the occurrence of a labeled arc fremy.
PNS§° that allows us to analyse the set of prefix-reachablévioreover the set of placeB.,: keeps track of the tokens

markings of8. The construction 08° from § is illustrated  transferred froniC to X', i.e. from8g . to 8¢, by the labeled
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arcs from—,.. Thus any prefix-reachable marking ®fs
represented by the restriction #. U Py Of a reachable

do so, we have to guid&® to transferexactlythe required
number of tokens fromPye to Psyr, Which corresponds to

marking of§8°. The key property of this representation, statedthe marking of Py.
in Prop. 2.2 below, asserts that, conversely, each firable Lemma 2.4:Let (u,v,w) be a partial computation i§

computation sequence 8f corresponds to a process of
§ and a prefixiC’ of IC such that the marking aPyre U Peut
describes the marking reached k.

In the next statement, for each markipgand for each
subset of placesX, we denote byu|X the restriction of
1 to the places fromX. The main results of this section

rely essentially on the next observation. We claim that any,

prefix-reachable marking & is represented by a reachable
marking of u° and vice versa.
referred to the detailed proof given in [5, Subsection 3.2].

Proposition 2.2: A multiset of places: € N” is prefix-
reachable inS if and only if there exists some reach-
able markingu°® of 8° such thaty = m5d(1°|Foe) +
Teut (1| Pour)-

B. Proof sketch of Proposition 2.2

For any rule sequence € R*, we call requirement of;
and we denote by réq) the least marking: such thatu
is firable frompu. This means thafu] , # 0 if and only if
w > requ). Let8 = (Q,r,—, uin) be a PNS. For each
rule sequence; = ry...r,, € R* firable from u;,, we let
1, denote the marking reached byfrom pyy,, i.€. p, =
pin + >y (r;® — *r;). Similarly for each rule sequence
firable from the initial marking.;,, o denotes the marking
reached by in §°.

We shall use the following notion of partial computation:
A partial computations a triple (u, v, w) € R* x R* x R*
such thatfv.w], N [u], # 0 andu € CS(S). Then
[v],.. # () hence the rule sequences firable fromy;,. A
partial computation is used as a witness for a proggsef
u and a prefixC, of IC,, with IC,, € [v] .- Note thatv need

i

The interested reader is

andq be some state such that— ¢ in 8. There exists some
firable rule sequencein $° which leads to the marking?
such that

(@) 7eut (12| Pout) + Tpre (12| Pore) = i,

() Trgig (12| Pout) + e (12| Pore) = bt

(© Teut (13| Pewt) = req(w),

(d) + — ¢ in 8°.

Conversely we need to show that the markinggtU Fey
reached after any firable transition sequencef 8° cor-
responds to a prefix-reachable markingfi.e. to some
partial computationu, v, w). To do so, we have to build
a firable rule sequence € FCSS), a processk, €
[v],, and a prefixkC, € [v], —inductively froms. At
each step the state reached byoincides with the state
reached byu. When8° applies an additional labeled adi¢
the corresponding partial computation is eitfferv, w) if
a €"seu; OF (w.r,v,w.r) if a €E—gyf; OF (w.r,v.r,w) if
a eLpre. In this last case, the rule and the sequence
of rules w can be performed concurrently: Formally we
shall establish thattr +reqw) < u,. This property follows
actually from the fact thaty can be fired from the marking
obtained by the tokens transferred fraRye t0 Py, i.€.
71'cut(recl(w)) < ,U:|Pcut-

Lemma 2.5:Let s be a firable rule sequenced leading
to the state; and the marking... There exists some partial
computation(u, v, w) of § such that
(@ Teut (12| Peut) + W;Tré (143 Pore) = po,

(0) Tyt (15| Pout) + Tore (113 Pore) = fiu
(© Teut (112] Pow) > reqw), and
d) 1 —qin 8.

not to be a prefix ofu, nor to be a computation sequence We are now ready to prove Prop. 2.2. Lgtbe the

of 8. Partial computations are closely related to prefix-
reachable markings, as the next basic observation shows.

Proposition 2.3:For each partial computatiofu, v, w),
the marking i, is prefix-reachable. Conversely, for any
prefix-reachable marking, there exists some partial com-
putation (u, v, w) such thatu = p,,.

marking reached by a prefik’ of a processk € [§].
According to Prop. 2.3, there exists some partial com-
putation (u,v,w) such thaty, = p. By Lemma 2.4,
there exists some firable rule sequencé $° such that
Tout (2] Peut) + Tore (U2 | Pore) = o = p. Conversely if
Teut (12| Pewt) + Tora (1| Pore) = p for some firable rule

The proof of Prop. 2.2 relies on the two next technicalsequences in $° then Lemma 2.5 ensures that there exists

lemmas which can be established by means of a bit tediousome partial computatiofu, v, w) such thatr=1
inductions. The first one asserts that for each firable comy-1

putation sequence € FCSS) and each prefixC, of each
processC, € [u],, . the VASSS® can be guided in order
to simulate each rule af in its sequential order so that the
marking reached by is described by the current marking of
PureU Psyt while the marking reached b, is described by
the current marking ofye U Pey. Furthermore we have to
make sure that the statec @) reached by is also reached
by s in §° and to check that all events froig, that do not
occur in IC,, are performed by transitions from—gy. TO

cut (15| Peut) +
pre (15| Pore) = f1,. Moreover Prop. 2.3 asserts tha is
the marking reached by some prefiX of some process

K e [8].

C. Analysis of prefix-reachable markings

Proposition 2.2 enables us to derive some techniques to
analyse the set of prefix-reachable markings oFirst, the
prefix-boundedness probleasks whether the set of prefix-
reachable markings of a given PNSSs finite. It is easy to
prove that the PNS is prefix-bounded if and only if the
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PNSS§° is bounded, which can be checked by means of the  .-z-------_--< " Masquerade ~~.
usual linear simulation of a VASS by a Petri net. Thus, ! T ©

Theorem 2.6:The prefix-boundedness problem of PNSs "\ Ticket requess .
is computationally equivalent to the boundedness problem \
of Petri nets. ]

\
1
Trusted third party ll \
1
1
\

1
1
Second, theprefix-covering problenasks whether a given " 30b submissio " Tickets Interception,”
multiset of placesy € NP is covered by some prefix- J “ Y Job/~ _____ -
reachable marking’ € N, i.e. u(p) < ¢/ (p) forall p € P. \ Clients private keyy /' Server
It is easy to see that is prefix-covered ir§ if and only if
the multiset of places.u(u) is covered by some reachable FiG. 8. A simple cryptographic protocol
marking of§°. Thus,
Theorem 2.7:The prefix-covering problem for PNSs is
computationally equivalent to the covering problem in Petr node z is labeled by the letter”), z < y, andz € X
nets. by means of the Boolean connectivesv, A, —,« and
Last but not least, therefix-reachability problemasks quantifiers3,V (both for first order and for set variables).
whether a given multiset of places is prefix-reachabl8.in Formulae without free variables are callseintences
Let us consider a slight modificatio8 of $° where for The satisfaction relatiop= between a labeled partial order
each placep € Py, each state; € $° is provided with (N, %,€) and a sentence is defined canonically with the
an additional self-loop labeled arc which carries a rulg thaunderstanding that first order variables range over nodes of
consumes a token from and produces nothing. Then a N and second order variables over subset®d oT he class of

multiset . of places is prefix-reachable ®if and only if  labeled partial orders which satisfy a sentepces denoted
Teu(pt) is reachable ir8’. Thus, by Mod(¢). We say that a class of labeled partial orders

Theorem 2.8:The prefix-reachability problem of PNSs is £ is MSO-definableif there exists a sentenge such that
computationally equivalent to the reachability problem of£ = Mod(¢).

_________ -

Petri nets. Example 3.1:The Petri net from Fig. 8 describes a simple
cryptographic protocol for the submission of jobs to a serve
[Il. CHECKING MSO PROPERTIES OF PROCESSES The client is specified on the left-hand side. It can request

At present we aim at checking more properties about théickets to a trusted third party by using its own identityefih -
processes of a given PNS. We show in this section how téhe third party produces a ticket that can be used to submit a
check effectively whether all processes of a given boundetPb to the server, with the help of the client’s private kelgeT
Petri net with statesS satisfy a formulay expressed in behaviour of an intruder is depicted on the right-hand side.
monadic second-order (MSO) logic. Since we do not requirdt can use the client's identity to produce a ticket request
the PNS to be prefix-bounded, our technique applies t®r intercept tickets. Consider at present the three next bas
infinite state systems. It relies essentially on Biichi Teeo  Properties:

[9] and a notion of process coloring that enables us tqP1) A ticket cannot be consumed without the client’s

recover a process from one of its linearizations. private key.
] (P2) The server does not consume jobs submitted by the
A. MSO logic intruder.

In the rest of this section, we fix a bounded PBISvith (P3) The client consumes only tickets that it has requested.

an initial markingyi, over the finite set of placeB and the  These properties can be easily formalized by MSO formulae
finite set of rulesi. In order to simplify the presentation over processes. For instance (P1) corresponds to the senten
of our result, we consider in this section that the events of/, (x : Tickety — (x : Clients private key) wherez : p is

a process are labeled by a rule instead of a rule name. Theshorthand for the property thatis an event that consumes

MSO logic we consider applies to the class of partial orderg, token available in a condition labeled pyi.e.
whose nodes are labeled by letters from the disjoint union

¥ = PUR, which includes in particular the processes of

each rule sequence € R*. Thus t.he mp_dels we consider The technique presented in this section can be used to check
here are triplegV, <, §) where N is a finite set of nodes, that (P1)-(P2) for all processes of the above Petri net.
< is a partial order ovelV, and¢ is a mapping fromN to  Fyrther it enables us to compute a counter-example (in the

¥ = PUR. form of a process) for the property (P2{P3).
Formulae of theMSO logic that we consider involve first-

order variables;, y, ... for nodes and second-order variables B- A technique to decidé |= ¢
X,Y, Z... for sets of nodes. They are built up from the SinceS§ is bounded, we can compute and fix some natural
atomic formulaeP,(z) for a € X (which stands for “the numberb such that each reachable markipngof 8 is b-

Jy, P(y) Ny <z AVz,(y<zAz=x2) > <=2
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bounded, that isu(p) < b for eachp € P. A rule sequence R B R e R
s =r1..ry € R* firable from pu;, is said to beb-bounded Cy 0 0| o
if the marking reached by each sub-sequencer; is b- ng o .
bounded. In particular any firable computation sequence of DZE 0
§ is b-bounded. .
We fix a wordw;, € P* that is a linear extension qf;,,, FIG. 9. A process coloring ofv, = zyzpzzcy
i.e. |winlp = pin(p) for all p € P. Similarly, for each rule
r € R, we fix awordw, = r.w,. where|w,.|, = r*(p) for all @ @
p € P. Then for each rule sequensge= r,...r,,, € R*, the [ NG W
sequencav, = wiy.wy,...w,,, 1S called therepresentative &

word of s. We regardw; as a linearly ordered set of nodes

labeled by letters fronk and we putw, = (N, <, §) where FIG. 10. Process of = pc corresponding to Fig. 9
N is a set of nodesg is a total order overV, and ¢ :

N — Y is a labeling. Nodes labeled by a place are called

place nodesvhereas nodes labeled by a rule are calldd  paye distinct colors. PreciseBC. guarantees that the colors
nodes Interestingly,ws is a linear extension of any process given to new tokens produced in a place by the occurrence
of s, where the place nodes following a rule node labeledqs 5 ryle differ from the colors used by available tokens
by r correspond to the multiset of tokem$ produced by i this place. It ensures also that the tokens produced in
this occurrence of. ~ some place by the occurrence of a rule get distinct colors.
In order to recover a process offrom the representative Consequently, at each step all available tokens in a place
word w,, we need to specify which available tokens arepaye distinct colors. In order to recover a process &bm
consumed by each occurrence of rule. To do so, we usg process coloring afi;, we have to make sure that there are
a coloring of the place nodes af, so that at each step enough available tokens when each rule is applied. The last
all available tokens in a given place get distinct C0|0r5-requiremeanC3 guarantees that for each rule node which
Moreover we also provide rule nodes with a series of othegonsumes a token colored Byin placep, some token of this
colors in order to specify which tokens are consumed at eacking occurred before the rule and has not been consumed in
step ofs. _ between.
Definition 3.2:Let w = (N, <,¢) be a linear order of e can show that the notion of process coloring char-
nodes labeled bY.. A process coloringf w consists of acterizes the linear extensions of processes and allows to
o apartition C' = {C1, ...,Cy } of the set of place nodes; recover a process from a word. This property is established
a place noder € N is said to be colored by in place by the two next statements (Prop. 3.3 and 3.4). Consider for
p if £&(n) =p andn € Cy. instance the rule sequenge= pc from the initial marking
« for each placep € P and eachk € [1..b], a subset (;, = {x,y,2} wherep: 20z +z andc:y+2z0y. A
of rule nodesD,,;; we say that a rule node € N  process coloring ofv, = xyzpzxcy with b = 2 is given by
consumes a token colored Byin placep if n € D, .  the tabular of Fig. 9. The corresponding process is depicted

Moreover the three next conditions must be satisfied: in Fig. 10.
PC,: For each rule node, for each place € P, we have Proposition 3.3:Let w; = (N, <, £) be a linear order of
#{k € [L.b] | n € Dyr} = (*¢(n))(p); nodes labeled by. which corresponds to the representative
.. p7 - 1

PC,: For each place € P and each colok € [1..b], any ~ Word of a rule sequencec 1*. Let €' = (Ci)iei.) @nd
two place nodes colored byin placep are separated 2 = (Dp.k)pepkefr..u) form a process coloring ob. Let
by some rule node which consumes a token colored< P€ the binary relation oveN such thatr <y if

by k in placep; « eitherz is a rule node ang is a following place node
PC;: For each rule node which consumes a token colored with no rule node in between

by k in placep, there exists some preceding place « Or y is a rule node and: is a preceding place node

noden’ < n colored byk in placep such that no colored byk in placep such thaty consumes a token

rule node between’ andn consumes a token colored colored withk in placep and no rule node between

by k in placep. andy consumes a token colored within placep.

Intuitively a place node belongs tg; if it describes a token Let < be the reflexive and transitive closure-ef. Then the
colored byk in placeé(n) € P. A rule noden belongs labeled partial ordefN, <, ¢) is a process of firable from

to D, if it describes an occurrence of the rufén) €  puin, denoted byKc p(s). Moreovers is b-bounded.

R which consumes a token colored kyin placep. Thus Thus each process coloring of; yields a process from
the conditionPC; asserts that: consumes the appropriate [s], . Consequentlys is firable from u;, as soon as it

i
multiset of tokens in each place, provided that these tokenadmits a process coloring. With no surpriséas to beb-
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bounded, too. Conversely the next result asserts that eadiready mentioned, a computation sequence can correspond
process of any rule sequencefirable from u;, can be to several non-isomorphic processes depending on the order
obtained by some process coloring:of, provided thats is  identical particles are consumed. Therefore we need the
b-bounded. notion of process coloring (Def. 3.2) and the related result
Proposition 3.4:Let s = r;...r,, be ab-bounded rule to recover a process from a word. This is the main difference
sequence firable from;, and IC be a process of. Then with the setting of MSCs because these are completely
there exists a process colorifig, D) of the representative specified by any of their linearizations because messages

word w, such thatc p(s) is isomorphic tokC. are never lost and always delivered in a FIFO manner.
Thus the notion of process coloring characterizes the proStill, the FIFO restriction can be formalized in MSO logic
cesses of any-bounded rule sequence firable from,. and our technique applies also in this special case. Second

Following the easy part of Biichi Theorem, we can desigrPetri nets and VASSs abstract away from the notions of
an MSO formulaps which defines the worde = (V, <, §) sites and channels in the setting of MSCs: A place can
over ¥ which are representative words of a computationdescribe the local state of a site, a communication channel,
sequence 0$. We can also design a formug.(C, D) with a shared-variable, etc. In particular our approach applies
b x (|P| + 1) second-order free variabl€s = (Cy)rc1.0)  to any bounded Petri net. To the best of our knowledge,
and D = (Dgp)ref1..6),pep Which characterizes the notion the model checking problem of bounded Petri nets against

of a process coloring for a wordv = (IV,<,&) over MSO formulae under the process semantics has not been
Y. Moreover, we can build a formuléx (z, y, C, D) with investigated so far in the literature.
two first-order free variables andy and b x (|P| + 1) The model-checking of graphs representing the executions

second-order free variables such that for any interpatati of a system against MSO sentences has been studied in
of C = (Cr)rep..o) and D = (Dy.p)repi.0),pep @and any different settings. Provided that the class of graphs cbnsi
interpretation ofr andy, ¢<(x,y,C, D) is satisfied if and ered is definable in MSO logic and tree-width bounded, the
only if we havez < y in the process corresponding to the satisfiability of an MSO formula is known to be decidable
process coloring given by the interpretation. [10], [25], [21]. However the processes of a PNS need
Let ) be an MSO sentence for labeled partial orders ovenot to be MSO-definable —even in the particular case of
Y. We consider the following formulag for words overs: a non-divergent MSG, because non-divergent MSGs can
— , describe non-regular sets of MSCs— so this line of work
s = ¢s A3C, 3D, (¢pe(C, D) A= (C, D)) does not apply to our setting. On the other hand, the class
where the formula)’(C, D) is obtained from) by replacing of processes of any bounded Petri net is MSO-definable.
each occurrence of < y by ¢<(z,y,C, D). Thus a word Consequently the partial order of events can be described
satisfiesyg if (and only if) it is a representative word of a by a concurrent automaton or a regular event structure [26]

computation sequenaeof § for which there exists a process for which branching time model-checking is available [16].
coloring which describes a process satisfying. In this This approach fails however for Petri nets with states which
way we get the main result of this section. are not prefix-bounded or whose processes are not MSO-

Theorem 3.5:Let § be a bounded PNS anglbe an MSO  definable.
sentence over causal nets. All processe$ sditisfy) if and
only if the word sentenceyg is not satisfiable.
We have implemented our technique on top of the tool We investigate a generalization of compositional MSGs
MONA [1]. Our prototype [3] allows us in particular to Which adopts the abstract token game of Petri nets and
design first a Petri net with TINA [2], next to use TINA keeps a semantics based on partially ordered sets of events
to compute an upper bound for the reachable markings, angplled processes. This model allows for the specification
finally to apply Theorem 3.5 to check MSO formulae over Of bounded counters and appears to be exponentially more
processes with the help of MONA. Continuing Example 3.1,concise than MSGs. We show how to check basic prop-
we could check that (P1}(P2) for all processes. Further our erties of the markings reached along partial executions,
tool was able to compute a counter-example for the propertfamely boundedness, covering and reachability. Processes
(P1)—(P3) —in the form of a short process— in only few are a means to track the causes of events occurring in
seconds with our computer (InIXeor® E5620, 2.4 GHz, an execution. For bounded systems, we present a method

IV. CONCLUSION

6Go RAM). to check any MSO property of processes by a reduction
] to the satisfiability of a word sentence. As illustrated by
C. Comparisons to related works Example 3.1, the process semantics of Petri nets can be

Theorem 3.5 subsumes previous works in several exused to model and check systems with specific behavioural
tents. As opposed to [13], [20], we do not assume FIFCconstraints, such as FIFO channels, causal communication,
behaviours and consequently we cannot make use of ther private keys, as soon as these restrictions are fornaalize
notion of representative linearizations. The fact is tlast, by an MSO sentence. The techniques presented in this
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paper allow us to check protocol specifications that includg12] J. Esparza and M. Nielsen. Decidability issues for iRets
message losses and bounded counters. They have been - a survey.Bulletin of the EATCS52:244-262, 1994.

implemented in a prototype tool [3] built on top of TINA [2]
to check the prefix-boundedness of a given PNS and MON

13]

[1] to check MSO properties of processes of a given bounded

PNS.

Previous works have proposed to mix MSCs and Petr'[14]

nets. In particular, netcharts [22] form a model of disttédal

system where local states of components are formalized b

places of a 1-safe Petri net whose transitions are label

5]

by an MSC. This model is expressively equivalent to com-

municating finite-state machines which makes it difficult

to check under the FIFO semantics adopted [6], [7]. 0;16]

the other hand Petri nets with states do not benefit so f
from effective relationships to models of distributed syss
similar to those available for MSGs [4], [13].
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