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I. INTRODUCTION

EvalMaxSAT1 is a MaxSAT solver written in modern C++
language mainly using the Standard Template Library (STL).
The solver is built on top of the SAT solver Glucose [1], but
any other SAT solver can easily be used instead. EvalMaxSAT
is based on the OLL algorithm [2] originally implemented in
the MSCG MaxSAT solver [3], [4] and then reused in the RC2
solver [5].

The OLL algorithm considers all soft variables as hard and
attempts to solve the formula. If the formula has no solution,
then a conjunction of soft variables that cannot be satisfied (a
core) is extracted. Each variable constituting this core is then
relaxed (removed from the list of soft variables or incremented
if it is a cardinality) and a new cardinality is added to the
list of soft variables encoding the constraint ”at most one
variable from the core can be false”. When the formula is
finally satisfied, we obtain a MaxSAT assignment.

In practice, the size of the cores plays an important role in
the performance of this algorithm. Indeed, the more variables
the cores contain, the more expensive the encoding of cardinal-
ities will be. Thus, once a core is found, a core minimization
phase consists of removing unnecessary variables. Although
heuristics are generally used to perform this minimization,
this phase remains very expensive. EvalMaxSAT performs this
minimization several times by calling the solver SAT with a
limited number of conflicts. In addition, the algorithm used
can easily be adapted to perform the minimization in parallel
with the core searching.

II. DESCRIPTION

The algorithm used is a modification of the OLL algorithm
(see Algorithm 1). The main modification is that when a core
is found and minimized, new variables and constraints are not
added to the SAT solver immediately. All these new constraints
will be added only when the formula becomes satisfiable, or
when finding a new solution takes too much time. By doing
that, this algorithm tries to reduce the number of implications
leading from cardinality to a soft variable.

A second modification made by the EvalMaxSAT solver
is in the minimize function. Indeed, this function will per-
form several minimizations in order to obtain small cores.
A first minimization is done by making successive calls to
solver(core) where solver calls are limited to zero conflicts.
Each call to the solver attempts to remove a literal from the

1See https://github.com/FlorentAvellaneda/EvalMaxSAT

core (a literal can be removed if the formulation remains
unsatisfiable). After that, we apply the same algorithm with
1000 limited conflicts by considering the variables in differing
orders.

Algorithm 1 (Pseudo-code of the sequential algorithm)
Input: A formula ϕ

1: cost← extractAM1(ϕ)
2: while true do
3: (st, ϕc)← SATSolver(ϕ)
4: if st = true then
5: ϕ← ϕ ∪ ϕtmp

6: (st, ϕc)← SATSolver(ϕ)
7: if st = true then
8: return cost
9: end if

10: end if
11: ϕc ← minimize(ϕ,ϕc)
12: k ← exhaust(ϕ,ϕc)
13: cost← cost+ k
14: ϕ← relax(ϕ,ϕc)
15: ϕtmp ← ϕtmp ∪ createSum(ϕc, k)
16: end while

III. IMPLEMENTATION DETAILS

Extract AM1 Two algorithms are used to extract AtMost1
constraints from soft variables. The first one uses the mcqd
library [6] to find the maximum clique in the incompatibility
graph of the soft variables; the second one uses a heuristic.

Cardinality The Totalizer Encoding [7] is used to represent
cardinalities. The implementation reuses the code from the
PySAT’s ITotalizer [8].

Exhaust After the minimization is performed, a core ex-
haustion [5] or cover optimization [9] is done.

Timeout Many timeouts are used to stop minimization when
they take too much time.

IV. MULTICORE VERSION

An interesting feature of the algorithm used is that it
is very simple to parallelize it. Although the competition
does not allow the multi-threaded calculation, this feature
has been implemented in the solver but disabled for the
competition. The architecture of the parallelized algorithm is
depicted in Figure 1. The main thread looks for new cores
to minimize and when it finds one, it removes all variables
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Fig. 1. Algorithm architecture

present in the core from the list of soft variables (Assum).
Paralleling this, threads access the cores found by the main
thread (ConflictToMinimize), minimize them and share new
cardinalities (CardToAdd), unused variables (LitToUnrelax)
and cardinalities to be incremented (CardToIncrement). Before
searching for new cores, the main thread collects the variables
that had previously been removed but were not used in any
previous thread.

When the main thread no longer finds a core, all minimiza-
tion threads have been completed and no variables are to be
reconsidered as soft, then the main thread considers the new
cardinalities to be added and incremented before restarting the
core search. If there are no cardinalities to add or increment,
then the search is complete and we get a MaxSAT assignment.
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