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Abstract. Checking the structural boundedness and the structurairtation of vector addition
systems with states boils down to detecting pathologicelesy As opposed to their non-structural
variants which require exponential space, these progenged polynomial time only. The algo-
rithm searches for a counter-example in the form of a multéarcs computed by means of linear
programming. Yet the minimal length of a pathological cycdm be exponential in the size of the
system which makes it difficult to visualize and to analyzedetected bug in details.

We propose to describe pathological cycles in the form dig@aar cycles called flowers. The latter
are made of petals which are iterated circuits connectedrbple paths that form a calyx. We
present an algorithm that builds in polynomial time a flowent the multiset of arcs that represents
a pathological cycle. Interestingly the number of petalthimia flower is at most equal to the
dimension of vectors which helps to describe in a concisetivayinderlying bug and to analyse it.

Keywords: Vector addition system with states, structural propertiesinter-example, dynamic
graph, zero-cycle.
1. Introduction

Consider a set of reactions that takes place among a colhegtiparticles such that each reaction con-
sumes a multiset of available particles and produces arlic@mabination of other particle types. This
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kind of framework can be formalized by a vector addition eys{13] or, equivalently, a (pure) Petri net.
In this case, particles are callemkensand particle types are call@taces Consider in addition a control
state that determines which reactions can occur, and sattihé& occurrence of a reaction leads to a
possibly distinct control state. Then the model becomem#dly a vector addition system with states
(a VASS), a notion introduced in [11]. In this paper we areliasted in twastructural propertiesfor
VASS, that is, properties that do not depend on a particolgéai distribution of particles among places.
In this way, we consider the initial marking as a parametdhefsystem.

The first problem we consider asks whether the number ofgestin the system remains bounded
for each initial configuration. In other words only finitelyamy distinct configurations can be reached.
Since particles often represent the consumption of resesuuch as messages in channels, this first
problem asks whether there exists some amount of resounffasent to cope with all configurations
reachable from any fixefihite set of potential initial configurations. A second basic és&uto check that
a given system terminates, i.e. whether there is no infinigewion, for each initial configuration. Thus
we aim at checking that a system eventually deadlocks. Atthane usually tries to avoid deadlocks
in concurrent systems, termination remains in some casesia problem in formal verification: In
particular non-termination can result from livelocks imcarrent programs when components fail to
achieve their tasks.

Structural properties regard the initial configuration gmeameter of the system. However, they are
also considered in practice for the analysis of systemsaditked initial configuration. The reason is that
these stronger properties turn out to be easier to checkitleémnon-structural variants [17, 23]. More
precisely checking boundedness for Petri nets providdd avitinitial configuration requires exponential
space [8, 19] whereas structural boundedness is polyng&iall]. Furthermore a similar gap exists
between termination [4, Th. 3] and structural terminatia4][

In order to describe a distributed system, it is often commrto use arectorof control states whose
components are the local states of each process. Thenlgmmipresent messages within channels.
This model is called aarallel-composition-VASH7, 18]. It is close to the notion of a communicating
finite-state machine [3] but with non-FIFO message exchan&milarly to the simulation of a VASS
by a Petri net, a parallel-composition-VASS can be simdlatea Petri net with additional places whose
marking represent the current vector of control stategrésstingly structural properties are not preserved
by this simulation. Besides checking the structural bodndss of a parallel-composition-VASS is NP-
complete [17] whereas this problem can be solved in polyabtime in the particular case of Petri nets
[8, 21].

We observe first in Section 2 that verifying the structuraledness or the structural termination
of a given VASS boils down to checking the costs of cycles ivithe system viewed as a weighted
directed graph: A cycle is pathological for structural bdedness (resp. structural termination) if its arc
weights sum to a positive (resp. non-negative) vector. €guesntly these two problems are very close
to the detection of a zero-cycle in dynamic graphs [12], Whasks if there exists a cycle with a zero
cost. In [15] Kosaraju and Sullivan showed how to decide ttistence of such a cycle in polynomial
time. Besides this problem was proved later to be equivatetfite general linear programming problem
[6]. The idea is twofold. First cycles are identified with peular multisets of arcs calledrculations
Second circulations with zero cost appear as solutionsredmear program. This technique adapts
easily to the detection of pathological cycles for strugtiroundedness or structural termination. The
resulting algorithm returns in polynomial time a circutatithat represents a pathological cycle if such a
cycle exists.
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When the model of a system does not satisfy a given properyd verification tools usually pro-
vide users with a counter-example execution in the form ofguence of atomic steps that describes
an unexpected behaviour. In this paper, we tackle the proloieproviding a useful description of a
pathological cycle for a structural property. The pointhattthe number of times an arc occurs in
a pathological cycle can be exponential in the size of thergiVASS, even though the time needed
to compute the corresponding multiset of arcs is only patyiabh Consequently listing the sequence of
arcs occurring along such a cycle is prohibitive in genekdlrst approach consists in providing a partial
description of the detected pathological cycle (a sortio€sdf the counter-example) as the set of all arcs
occurring in this cycle —or simply the set of places inteiragin the reactions performed by these arcs.
However, this information may not be sufficient to underdtéully the detected bug. In particular, it
does not determine the minimal configuration required t@eteea detected pathological cycle.

In the particular case of a VASS with a single state —that &0 a pure Petri net— a multiset of arcs
can be regarded as a multiset of cycles with a common stestatg. Moreover, due to Carathéodory’s
theorem [22, Cor. 7.7i], we need at medistinct arcs to describe a structural bug if the given VAGS h
p places. More precisely, givenintegralp-dimensional vectors,, ..., z,, € Z” and a linear combination
AM X1+ e+ Az, = zWith Ay, .., A\, € N, if n > p then we can compute in polynomial time other
coefficients\], ..., \, € Nsuchthat\| - z1 + ... + X/, - &, = m - z for somem € N\ {0} and moreover
A; # 0 for at mostn — 1 values ofi € [1..n] (Cor. 4.7). Thus each pathological cycle can be represented
by p elementary cycles of length 1 and with a common startingg sthtt this work, we want to extend
this property to any VASSMe aim at decomposing a given pathological cycle in the fdranparticular
multiset of connected cycles. Moreover each componerg ejduld be easy to depict and the number
of distinct cycles in this multiset should be at most equéhéonumber of places in the given VASS.

We introduce in Section 3 the notion of a flower. Roughly sp@egka flower consists of iterated
circuits connected by simple paths. Our main result asg@tsve can compute in polynomial time such
a structure that corresponds to a given multiset of arcsiwt@presents a pathological cycle. Moreover
the number of distinct circuits we need is at most equal tontlmaber of places. Thus we propose to
describe a structural bug to the user in the form of a smallbemof circuits and a connecting cycle
together with the number of times each of these cycles ocdlnse that this information allows us to
compute the minimal configuration required to execute thig pathological cycle. This information is
useful to the user when structural properties are checlsdadd of their non-structural variants, if the
abstraction process yields a false counter-example. Theeartalysis of the detected pathological cycle
can lead to a refined model with a larger set of initializectgsa

The construction of a flower we present in this work reliesother class of particular cycles, called
wings introduced in [2]. Intuitively, a wing consists of a cireprovided with two simple paths back and
forth from a fixed starting state to a state along the circiidditionally, thevaluationof a wing deter-
mines the number of iterations of its cyclic component. Ariimediate result is established in Section 4.
We show how to compute in polynomial time a multiset of wingdhwva common starting state that cor-
responds to a pathological cycle given as a multiset of &cgseover the common starting state of these
wings can be chosen arbitrarily and, here again, the nunflaistinct wings we need is at most equal to
the number of places. We show in Section 5 how to build a flonenfsuch a multiset of wings.

Example 1.1. Along this paper, we shall use as a running example the 2+dimeal VASS depicted in
Figure 1. This VASS has three staigs g1, andg, and five weighted arcs;, as, as, I1, andls. The
cost of the cycley = ay.(11)°.a2.(I2)%.a3 is (1,4)T. So this cycle is pathological for both structural
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termination and structural boundedness: This VASS is motstrally bounded and it does not terminate
structurally. The cycle is actually a flower witH; andl; as iterated circuits while; andas.a; are two
connecting paths. Of course, it is easy to guess a pathaldipever in this simple case. This running
example is only used to illustrate the various conceptscatbie paper and the algorithm adopted to
compute a flower. Observe here that the two cyales= a1.(l;)'%.az.a3 andws = aj.as.(I2)%.a3 are
actually two wings starting from, with valuations 10 and 6 respectively. The cost of the cyglevs is
(2,8)T so the multiset of wings); + w- is pathological, too.

Figure 1. A vector addition system with states

2. Background

Let p be a fixed non-zero natural number. A vector addition systéimstates is a directed graph whose
arcs are labeled by vectors frdff.

Definition 2.1. [11] A vector addition system with statéfer short, a VASS) is a pa = (@, A) where
Q is afinite set of states, andl C Q) x ZP x @ is a finite set of arcs labeled by vectors frath.

Throughout the paper we 18t = (Q, A) be a VASS. We letQ| and|A| denote the cardinalities @)
and A respectively. The source and the target of a labeled &cA are denoted byom(a) andcod(a)
respectively. We letost(a) € ZP denote the column vector labeling eachare A. The size of a VASS
8§ =(Q,A)issize(8) = |A] x (2 x [logs(|Q] +1)] +p X (1 + [logs(1 4+ vmax)])) Wherevy,.x is the
maximal absolute value of coefficients of vectors labelirgsan S.

2.1. Basics

LetS = (@, A) be a VASS. A configuration is a pafg,r) € @ x NP consisting of a control state
and a multiset of available particles A labeled arcz € A is enabled at the configuratiql, ) and
leads to the configuratiofy’,r’) if dom(a) = ¢, cod(a) = ¢/, andr + cost(a) = r’. An execution of
8 from an initial configuration(gin, 7in) is @ sequence of labeled ares..a,, € A* such that there are
configurations(qo, 70), ..., (qn, ) for which (go,70) = (gin,7in) and for each € [1..n], the labeled
arca; is enabled atq;—1,7;—1) and leads tdg;, ;). Then the configuratiofig,, r,,) is reachable from
(Qinﬂ"in)-

A path is a sequence of args= a;...a,, € A* such that we havdom(a;;1) = cod(a;) for each
i €[l.n—1]. Apathy = a;...a, € A*is closed ifn > 1 anddom(a;) = cod(a,). A closed path is
called acycle A pathy = a;...a,, € A* issimpleif dom(a;) # dom(a;) for all distincti, j. A circuit is
a simple and closed path. The cost of a path a;...a,, is the vectorost(y) = Zji’f cost(a;). Further
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the cost of a multiset of ares€ N4 is cost(z) = 3°, 4 #[a] - cost(a) and the cost of a finite multiset of
pathsWis cost(W) = > 4« W[y] - cost(7). Letv andv’ be two mtegral vectors with coordinates:
v = (v[1],...,v[n]) andv’ = (V'[1],...,v'[n]). We put as usual > o' if v[i] > v'[i] for eachi; v > V' if

v[i] > '[i] for eachi; andv > ' if v > o' andv # v'.

2.2. Structural properties and characterizations with cydes

A VASS provided with an initial configuratiofigin, in) terminates if there is a natural numbeér such
that the length of each execution®from (gin, rin) is at mostk. In other words, an initialized VASS ter-
minates if and only if it has no infinite execution. In this papwve are interested structural properties
that is, properties that do not depend on an initial configoma

Definition 2.2. A VASS 8 terminates structurallyf it terminates for all initial configurations.

The structural termination problem for vector additionteyss asks whether a given VASS has no
infinite execution for all initial configurations. We obserfirst that this question boils down to searching
for particular cycles irS. This fact is easily established by Kénig infinity lemma Jlhd Dickson’s
lemma [13, Lemma 4.1].

—

Proposition 2.3. A VASS 8 terminates structurally if and only if there is no cyelavith cost(v) > 0.

A VASS provided with an initial configuratiolgin, 7in) is boundedif it admits only finitely many
reachable configurations. A VASSs structurally boundedif it is bounded for all initial configurations.
Similarly to Proposition 2.3, checking the structural bdedness of a VASS boils down to detecting a
cycle with a non-negative non-zero cost: A VASSs structurally bounded if and only if there exists
no cycle~ with cost(y) > 0. In the sequel of this paper, we focus on structural terrianatonly.
Consequently witnesses of non-satisfiability are fornealiby the following notion of a pathological
path. However all results presented in this paper adapt oiratedy to structural boundedness.

Definition 2.4. A cycley in a VASSS is pathologicalif cost(vy) > 0.

Example 2.5. Consider the VASS with a single state and six self-loop aabgled respectively by the
six following 6-dimensional vectors:

2 -1 0 0 0 0
0 2 -1 0 0
t] = 0 o = 0 sl = 2 yta = 2 Vs = yle = U
0 0 0 1 -2 0
0 0 0 -2
-1 0 0 0 0 1

It is easy to see that each pathological cycle needs all aaause of their pairwise dependencies. More-
over a pathological cycle that contains one occurrencg méeds 2 occurrences @f 4 occurrences af;

and hence 4 occurrencestgf 2 occurrences af, and one occurrence of. Therefore the pathological
cycley = t1.(t2)%.(t3)*.(t4)*.(t5)?.ts has a minimal length. We can easily generalize this exanaple t
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a VASS (with a single state) made 2fx m arcs, whose pathological cycles have a length greater than
2% (2™ —1).

This example shows that the minimal length of a pathologigale can be exponential in the size of
the given VASS. For that reason, an abstract view of cyclaségssary to deal with them in polynomial
time. Following [6, 15], we shall represent cycles of a VAS®&s particular multisets of arcs called
circulations

2.3. Circulations vs. cycles

Letz € N4 be a multiset of arcs. We denote | = |{a € A | z[a] > 1}| the number of distinct
arcs inz and by A, the support ofz, that is to say the set of ares€ A such thatz[a] > 1. Thus
|z| = |A.|. Theunderlying graphG, of x is the (undirected) grapy, = (Q., E.) where the set of
vertices@), = {dom(a) | a € A,} U{cod(a) | a € A,} collects the source and the target of all arcs
in z and the set of edgeB, = {{dom(a),cod(a)} | a € A, anddom(a) # cod(a)} keeps track of
all connections induced by arcs in The size ofx is size(z) = >_ . 4[logs(1 + z[a])]| because the
coefficients ofr are encoded in binary.

A multiset of arcsz € N4 is called connectedif G, is a connected graph. Let € N4 and
Kyq,...,K, C Q. be the connected components®@f. For eachl < i < n and eactu € A, we put
z;[a) = z[a] if dom(a) € K; andz;[a] = 0 otherwise. Themw = 1 + ...+, and the multisets; € N4
are called theonnected components.of

Definition 2.6. A multiset of arcsz € N is Eulerian if > dom(a)=q £1a] = D cod(a)=q ¥la] for each
stateq € (). A connected and Eulerian multiset of arcs is callezireulation.

Thus a multiset of arcs is Eulerian if for each statee number of arcs incident frogrequals the number
of arcs incident tg;. Note that ifz andy are Eulerian, then 4 y is Eulerian. If moreover < y then
y — x is Eulerian, too. Thenultiplicity of a non-zero multiset € N4 \ {6} within a multisety € N4 is
the greatest natural numbkeisuch that - x < y.

Each cycley = a;...a,, 0f § is represented by the multiset of atcs = ij’f a;, i.e. xz[a] is the
number of occurrences afin . Sincey is a cycle, the multiset of ares, is non-empty, Eulerian and
connected. For instance, continuing Example 1.1, the satltf arcsy; +as + a3+ 511 +3 - 12 is
the circulation corresponding to the cyeje= a;.13.a2.13.a3. Conversely, each non-empty circulation
corresponds to a cycle 8t This is an immediate variant of Euler’s theorem [7, Th. 1].8.

Proposition 2.7. Letz € N“ be a non-empty circulation. Then there exists a cyckeich thatr, = .

Observe here that the directed graph made of the set offarésr a circulationz is strongly connected.
In [15], Kosaraju and Sullivan showed how to detect a cyclénaizero cost in polynomial time by

a reduction to linear programming. We explain here why techhique can be adapted with no effort

to the verification of structural termination. In fact, itdsfficient to replace a vector equality= 0 by

« > 0 in part of the linear programming problem considered. GR&MSSS = (Q,A), afirst step

consists in listing the subsef C A of all arcs that appear in a multisif of cycles withcost(W) > 0.

To do so, for each aré € A, one considers the following linear programming probl&mnwith |A|
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rational variables: € Q4.

> cod(a)=g £[] = D dom(a)=q 7la] for eachg € Q

z[a] > 0 for eacha € A
(R { M

z[b] > 1

Y acarla) - cost(a) > 0

It is clear thath belongs toA’ if and only if P, has a solution. In that case, we denoterhy solution to
this problem withz;, € N4. We need here to derive an integral solutisne N4 to P, from a rational
onex € Q4. To do so, one can use Euclid’s algorithm to compute the le@simon multiplem of the
denominators of all coefficients afand putz’ = m - z. Next, three cases appear:

1. If A’ is empty ther$ terminates structurally, because no arc appears in a paibal cycle.

2. If A’ is non-empty and strongly connected th&mloes not terminate structurally because the
multiset of arcse = ), 4 3 iS connected, Eulerian andst(z) > 0. Observe here that the
supportA, of z is maximal sinced, = A’. Thus the detected pathological cycle has a maximal
support.

3. LetAy,..., A, be the strongly connected componentsigfwith n > 2. We consider the VASSs
81,..., S, obtained fromS by a reduction to the subsets of atds,..., A,, respectively. Ther$
admits a pathological cycle if and only if one of thesubsystems,,...,S,, admits a pathological
cycle. Consequently it is sufficient to apply recursivelg #igorithm to each of these systems.

This algorithm yields a polynomial time procedure that dtsewhether the given VASS terminates
structurally and returns a pathological circulatioif it does not. Note here that the lengii . 4 z[a]
of a corresponding cycle can be exponential in the siZ:li#cause the coefficients efare encoded in
binary.

We have observed that the supportwaf actually maximal. In practice, we can use this procedure
iteratively to make sure that the supportzofs minimal, that is, there exists no pathological circuati
y with A, C A,. However, searching for a pathological circulation with imimal number of arcs in its
support is known to be NP-hard [2].

3. Representation of circulations

In order to help the understanding of a structural bug detebly a verification tool in the form of a
circulation, it is useful to represent this counter-exaanjal the user as a pathological cycle. Then the
length of such a pathological cycle equals the sum of thelleition coefficients. Consequently it can be
exponential in the size of the VASS, as already observed anigte 2.5. Thus, listing the sequence of
arcs occurring along a pathological cycle is prohibitiver that reason, we need to desigeanpact
representatiorof pathological cycles.

3.1. Aformat to describe pathological cycles

It is clear that any pathological cyctecan be decomposed iteratively into a multi€etf circuits with
cost(C) = cost(vy). Then we can select withifi a set ofp circuits (wherep stands for the dimension of
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vectors) and compute a multisétbuilt over these circuits such thatost(C’) = m - cost(~) for some
m € N\ {0}. This fact relies on a convexity argument known as Carathegitheorem, as discussed
in the introduction. However, the set of arcs occurring i@ $electeg circuits in this way need not to
be connected, that i€ does not represent a pathological cycle. A natural idea iséan additional
connecting cycle (called thealyx) on which the selected circuits (callpétalg would hang. This leads
us to the notion of flower.

Definition 3.1. A floweris a structureF that consists of
e a sequence df connection stateg, ..., q_1 With k > 1,
e asequence df circuitsoy, .. ., o,_1, Where each circuit; starts fromy;,

e aconnecting cycley ... r_1, wherer; is a simple path frong; t0 g; 11 (mod 1) that is empty if
qi = qi+1 (mod k)»

e together with a sequenes, . .., n; of natural numbers, with; > 1.

Such a structure represents the cygle = 0°.kg.07" ... JZiElﬁk_l.(lio ... Kp_1)™ ! starting from
qo- Its cost is equal toost(F) = cost(yr) = 2?:01 ng - cost(k;) + n; - cost(oy).

The component circuits; of a flower are called thpetalswhile the connecting cyclgy .. . ki_1 is
called thecalyx Each petab; is iteratedn; times while the calyx occurs, times invx. We say that
the calyx of F is iteratedif n, > 2. A flower F is said to be pathological ifost(F) > 0. Continuing
Example 1.1, the cycle = [7.a2.15.a3.a1 corresponds to a flower with two petals that are iterated 3 and
5 times respectively. Note that each flower contains at leastpetal so that the represented cygte
cannot be empty. We require thatis empty ifg; = ;11 (mod 1) PECaUse the calyx is essentially meant
to connect petals. In particular, a flower with a single pbta an empty calyx: It is simply an iterated
circuit. Note here that a cycle can describe several distiowers because the order of petals hanging
on the same state is meaningless and the calyx can be regerdquktal itself, if it is an iterated circuit.
These two situations will appear in examples below. Yetnind example shows that we cannot require
in general that the calyx be a circuit.

Figure 2. The calyx of a flower cannot be a circuit

Example 3.2. Consider the 2-dimensional VASS with 3 states from Fig. Zhg@n-empty pathological
cycle in this VASS makes use of each arc. Consider a pathaabfijower for this VASS. The two self-
loop arcs ony; andgs must occur as petals. Consequently the calyx goes throagie tivo states and it
cannot be a simple cycle.
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3.2. Representation of circulations with flowers

In this paper we show that each non-empty pathological leticen can be represented by a flower with
at mostp petals.

Example 3.3. Let p = 4. Consider the VASS with a single state and four self-loos éabeled respec-
tively by the four following 4-dimensional vectors:

1 0 0 -1
P B P e e N

0 -1 1

0 0 -1 1

The cycley = t;.ty.t3.t4 satisfiescost(y) = 0 and corresponds to a flower with four petals;t», ts, t4

and an empty calyx. Itis clear that any pathological cyclelves all arcs of this VASS because of their
pairwise dependencies. Therefore any pathological flo@eds precisely these four petals, too, because
no self-loop arc can occur within a calyx and petals are reguo be circuits.

This example easily adapts to any dimensiorThus we cannot expect in general to have less than
p petals in a representative flower of a pathological cireoat Theorem 3.4 below asserts that it is
sufficient to consider flowers with at mgspetals to represent any non-empty pathological circuiatio

Theorem 3.4. Let H be a non-empty circulation of a VASE We can compute in polynomial time a
flower F with at mostp petals such thatost(F) = m - cost(H ) for somem € N\ {0}.

We present in the following sections an algorithm that migdch a flowef- from a given circulationd
in time polynomial in the size of the inputs, that is, the sizéhe VASSS plus the size of the circulation
H. With no surprise, the floweF is built only from the arcs appearing in the circulatifih(because we
can assume that all arcs ®bccur inH).

Observe that the resulting flowéf is pathological if and only if the given circulatioH is patholog-
ical. Thus Theorem 3.4 yields a pathological flower builinfrany pathological circulation. Since the
latter is meant to be produced by our variant of Kosaraju arnlliv@n’s algorithm, its size is polynomial
in the size of the VASS —although the length of any corresponding cycle may be espiial in the
size of§. Thus, in practice, we obtain a pathological flower in timé/pomial in the size of.

Observe also that we have similadyst(F) = 0 if and only if cost(H) = 0, andcost(F) > 0 if
and only ifcost(H) > 0. Consequently Theorem 3.4 applies to the representatiaarofcycles and to
counter-examples of structural boundedness, too.

The factorm in the statement of Theorem 3.4 is not a drawback of the reptason of circulations
by flowers because the actual length of the resulting pagficab cycle is not relevant. Moreover this
factor is necessary to ensure that the flower has at mostals, as the next example shows.

Example 3.5. Consider the VASS with a single state and four self-loop kiosled respectively by the
four following 2-dimensional vectors:

"= (‘;) fa = (IJ) o= (—16> e <-18>
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Let H = t; + to + t3 + t4. We havecost(H) = (0,1) so the circulationf is pathological. This
circulation can be regarded as a flower with four petals. diisy to see that one needs only two petals
to build an equivalent flower. For instanég = ¢, + t4 satisfiescost(H’) = 2 - cost(H ). Observe here
that the support off’ does not include all arcs frofif. Further, there exists no flowét” with at most
two petals such thatbost (F"”) = cost(H).

The next example shows that Theorem 3.4 does not hold if wareethat the iteration of the calyx
is forbidden.
()

() @0 ()

Figure 3. lterating the calyx is necessary to a flower with astpn petals

Example 3.6. Consider the 2-dimensional VASS with two staigsandg, depicted in Figure 3 and the
non-empty circulationly = I; 4 I + 2 - (a; + ag). We havecost(Hy) = 0. Let H be any non-empty
circulation withcost(H) = 0. We haveH = x-1; + y-la+z- (a1 + a2) becausdd is Eulerian. Clearly
x # 0. Furthermorey # 0 because the linear system of two equalitiesz —z = 0and—5xz+2z =0
requires that = z = 0. It follows thatz > 1 becauséd is connected. Similarly, we hawe# 1 because
the linear system of two equalitidsx x — 2 x y — 1 =0and—5 x z + 3 x y + 1 = 0 has no integral
solution. Consequently > 2. It follows that any flowerF with cost(F) = 0 with at most two petals
must admitl; andl, as petals (since they cannot occur in the calyx) ands as calyx; moreover this
calyx must be iterated at least twice.

3.3. Anintermediate format: Wings

In this paper, we shall use an alternative structure whiphesents pathological cycles in the form of a
multiset of particular cycles called wings. Roughly spegkia wing with valuatiork is a cycle which
consists ofk iterations of a circuit plus a path back and forth from onéestd the circuit to some fixed
starting state. This shared starting state will ensureatmatiltiset of wings remains connected.

Definition 3.7. Let q,¢' € Q be two states 08. Let, be a circuit of§ starting fromq’. Let~; be a
simple path fromy to ¢’ and~, be a simple path from’ to q. Letk € N\ {0}. Letw = y1.7%.72 be
the cycle which starts fronmpand which consists of;, followed byk iterations of the cycley, followed
by 72. Thenw is called awing of 8§ with valuationk. A wing is said to beeducedif ¢’ differs from the
domain of each arc of; andgq differs from the domain of each arc ¢f.

A wing is often represented by a multiset of alts= D + k- C whereC is the set of arcs occurring
in the cycley, while D is the multiset of arcs occurring in and~». Then the multisetV is connected
and Eulerian. Note that the connecting cygley, from ¢ need not be simple (nor non-empty). However,
each arc occurat most twicen ~;.vs. In this paper, we will only consider reduced wings becahsg t
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are easier to use in order to build flowers, while the algoritictually yields reduced wings. The point
is thaty; and~, are used to connect the iterated circyjtto the fixed state, and they can be chosen as
shortest paths fromto ¢’ and fromq’ to ¢ respectively.

Example 3.8. We continue Example 1.1 with = 2. We have observed that the cost of the cyglis
cost(y) = (1,4)". Consider the two wing8/; = a;./{°.as.a3 with valuation10 andWs = a;.az.15.a3
with valuation6. Noteworthy2 - cost(y) = cost(W7) 4 cost(W2). This equality illustrates precisely
how wings can represent a cycle up to a scalar multiplicgtotor of its cost.

In Section 4 we establish the following intermediate resitiich asserts that there exists such a
representation by wings for any pathological circulation.

Theorem 3.9. Let H be a non-empty circulation of a VASSand( € Q- We can compute in polyno-
mial time a non-empty multiséty of wings built over at mosp distinct reduced wings starting frogm

A

and such thatost(W) = m - cost(H ) for somem € N\ {0}.

The next section is devoted to the proof of Theorem 3.9. Wi giesent an algorithm that builds a
multiset of wings from a circulation in time polynomial indlsize of the inputs, that is, the size of the
VASS $ plus the size of the circulatioAl. Similarly to Theorem 3.4, the given circulation is meant to
be produced by our variant of Kosaraju and Sullivan’s atyami Its size is polynomial in the size of the
VASSSS. In this case, we compute a pathological multiset of winggnire polynomial in the size of.
The construction of wings from a circulation is largelgn-deterministiclt relies on a series of arbitrary
choices at several stages, without any backtrack. Thesesshcan be solved by, say, an arbitrarily fixed
total order over the set of arcs & This yields implicitly also a total order over the statessofrhen the
constructions of wings and flowers described in the two nestiens become deterministic.

As opposed to flowers, wings have many advantages in termscbhical simplicity. Adding a
new wing starting fromj to a set of wings starting fronj needs no effort, while adding a petal to a
flower requires to find a new calyx, as soon as the new petal mimtamneet the original calyx. Further-
more, removing a wing from a multiset of wings (because ite@pp to be redundant by application of
Carathéodory’s theorem) needs also no effort, while rengpa petal from a flower can affect the calyx
and create a new petal, because the calyx must consist ofespaths, only. Thus, multisets of wings
are easier to build and to reduce than flowers.

Still, the format of flowers was suggested in [2] as a simgiercsure. The point is that flowers with
p petals are conceptually simpler thaiterated wings because each w'rmgy(’)C .2 With valuationk that
is iteratedzx times corresponds to a cyclic componegtthat is iteratedr x & times and a connecting
cyclev.7y- that is iterated: times. Intuitively, the calyx in a flower replaces all contireg cycles within
a multiset of wings. For that reason, we consider flowers ta better format.

4. Construction of wings from a circulation

In this section, we fix a VASS = (Q, A), a non-empty circulatiod? € N4 and a statg € Qpy. We
prove Theorem 3.9 in two steps. We show first how to computelynpmial time a non-empty multiset

W of reduced wings starting frogsuch thatost(WW) = m - cost(H ) for somem € N\ {0}. Next we
explain in Subsection 4.3 how to reduce the number of distifregs inW to less tharm.
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The construction ofV proceeds inductively over the numHéf | of distinct arcs infl. At each step,
awingW = D + k- C < H with valuationk is added ta/V and removed fronH until H is empty.
This wing should satisfy the three following properties:

1. Some arc in the cyclic componefithas multiplicity k& within H; in this way, at least one arc is
removed from the support df at each steplH — W | < |H|.

2. The Eulerian multiset of remaining arés — W is connected; this ensures that we can proceed
recursively.

3. The fixed statej belongs to the new circulatio”l — W, so that all wings share this common
starting state —except of courseHf — W is already empty.

The first idea for the search of such a wiigwithin H is that it is sufficient to find a circuif' satisfying
these conditions. This leads us to the following centralomobf anadequatecircuit.

Definition 4.1. Let H € N4 be a non-empty circulation ang € Q. A circuit C' with multiplicity
k > 1in H isadequatdor H andgy if it satisfies the two next conditions:

o the multiset of arcdf — k - C is connected,;
o if H— k- Cisnotempty ther®y _r.c containsgg.

Example 4.2. Continuing Example 1.1, we consider the circulatidn= a1 + as + a3+ 5 11 +3 -l
for the VASS depicted in Figure 1. Then the two circuitsandi, are adequate fol andq, whereas
the circuita;.as.a3 is not for two reasons: First, the multiset of afés— a1 — as — a3 is not connected;
second, it does not contaigg.

Note that|H — k- C| < |H| for any circuitC' with multiplicity & in H. The construction o#V
relies on two independent algorithms presented in the two sutbsections. The first algorithm shows
how to find an adequate circuit for any non-empty circulatidne N4 and any state, € Q. The
second one is much easier. It explains how to build the egdetiultisetyV of wings with the help of
adequate circuits as inputs.

4.1. Finding an adequate circuit in a circulation for a fixed date

The search for a circui€’ adequate foid and gy proceeds non-deterministically and inductively over
the numbet| H | of arcs inAy. Each step distinguishes two main cases. The simpler casenas that
all circuits within H containgy,. Then each circuit is adequate féF andgg. The reason is that any
connected component of the Eulerian multiset- £ - C' contains a circuit, and hence contaips

The more interesting case considers that there existsuitaife< H that does not contaigqy. Let &
be the multiplicity ofC' within H. Thengy € Qg _«.c becauseg does not occur i’'. HenceH —k-C'is
not empty. Then the circul® is adequate iff — k - C is connected. In this case, the search is terminated.
Otherwise we consider a connected comporéhof H — k - C that does not contaig,, as illustrated
in Fig. 4.1. We will show how to find irif” a circuit C’, with multiplicity £’ in H’, such that

1. at least one ara € Ay \ Ac satisfiesH'[a] = k. ThenH’[a] = HJa] and ¥’ is also the
multiplicity of a in H; hence|H — k' - C'| < |H].
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2. each connected componentidf— £’ - C’ contains a state fro¥. ThenH — k' - C’ is connected,
moreoverg, € Qy_x.c becausey does not occur i’.

It follows thatC’ is adequate foH andqp.

The search for an appropriate circait within H' can be regarded as a generalisation of the search
for an adequate circu® within H where the connectivity off — & - C'is replaced by the connectivity
of H' — k' - C' if one incorporates the circuif. Actually, for simplicity’s sake, we will consider at this
point a simple patlr made of all but one arcs frod. Intuitively, o will play the role of C. However
we shall also consider a special case whergthe empty path in order to deal with adequate circuits as
a special case.

Figure 4. Searching for an adequate circuit Figure 5. Induction step

Definition 4.3. Let H € N be a non-empty circulationyy € Qp, ando € A* be a simple path.
A circuit C' with multiplicity £ > 1 in H is appropriatefor H and (qo, o) if it satisfies the two next
conditions:

1. there exists an aice A¢ \ A, such that [a] = k;
2. each connected componentif— k - C' contains a state from@, U {qo}.

Observe that a circui’ is appropriate ford and(q, €) wheree denotes the empty path (Def. 4.3)
if, and only if, it is adequate foff andgq, (Def. 4.1). For that reason, the search for an adequateitcircu
will simply ask for an appropriate circuit w.r.t. the emptgtpe in Algorithm 2 below. In this way, the
role of stateg, for adequate circuits is extended to a path

We present now in Algorithm 1 a way to compute circuits th& appropriate foZ and (g, o),
provided that is not a circuitgy € Qg, andgy € Q. if o is not empty.

Proposition 4.4. Let H € N be a circulation. Letjy € Qy ando € A* be a simple path such that
qo € Q. if o is not empty. Provided thatis not a circuit, Algorithm 1 returns a circuit that is appriegpe
for H and(qo, o).

Assume thafd € N4 is a non-empty circulation and = a1 ...a,, is a simple path consisting of arcs
from A such thatr is not a circuit. Letyy € Qg be a state off such thayyy € Q. if o is non-empty.
Searching for an appropriate circditfor H and(qo, o) is slightly more involved than searching for an
adequate one. However, Algorithm 1 proceeds similarly éoahove discussion and distinguishes two
main cases.
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Algorithm 1 AppropriateCircuitH, qo, o)

Require: H € N4 is a non-empty circulation.
Require: o is a (possibly empty) simple path consisting of arcs frdrand such tha# is not a circuit.
Require: g9 € Qy andqy € Q, if the patho is non-empty.
if all circuits C < H satisfyQc N (Q, U {qo}) # 0 then
Choose) € Ay \ A, arbitrarily
B+b # Initially g is a path of length 1
while 8 contains no circuitlo
if there exists an ari¢ € Ay \ A, with dom(d’) = cod(b) then
Choose som¥ € Ay \ A, with dom(b') = cod(b)
else
Find the ard’ € Ay N A, such thatlom(d') = cod(b)
end if
Add the arc’ to the end of the path
bV # 3 remains the last arc gf
end while
return a circuitC within 8
else
Choose a circuiC' < H such thaQe N (Qs U{qo}) =0
Let k& be the multiplicity ofC' in H
if each connected componentiéf— k - C' contains a state fro®, U {qo} then
return C # In particular ifH =k - C.
else
Choose a connected componéfitof H — k - C with Q» N (Q, U {q0}) = 0.
Choose a statg, from Qi N Q¢ and an ara € Ac with Hla] = k.
Let o’ be the path made of all arcs froAr \ {a}
return AppropriateCircuitH’, g, ') # Then|H'| < |H]|
end if
end if

We need first to determine whether all circuitsAhcontain a state frond), U {¢o}. To do so, one
considers the subset’ C A consisting of all arcs fromi whose source and target do not belong to
Qs U{qo}. Let A],..., A}, be the strongly connected componentsAdf Then there exists a circuit in
H with Qe N (Q,U{qo}) = 0if, and only if, A’ contains a self-loop arc or one of the strongly connected
componentsd] has two states. Depending on whether this condition isfiatjsve investigate one of
the following two cases:

1. We assume first that all circuits f contain a state fromy, U {qo}. Algorithm 1 builds a circuit
C = apay...a,_1 In H using preferably arcs that do not appeasirSinceos is not a circuit andd
is a non-empty circulation, we can choose first an arbitrecy & Az \ A, and consider the path
B = b. This path is extended iteratively by adding arcs frdm to the end of3 until 5 contains
a circuitC. At each iteration, there are potential candidates to cetapl becauséed is Eulerian.
However, we require that arcs frory; \ A, are preferred to the others in this extension process.
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Clearly this loop terminates after at magly| iterations. At this point, we claim that the circuit
C' within 3 is appropriate forrd and(qg, o).

Proof. Letk > 1 be the multiplicity ofC'in H. SinceH is Eulerian,H — k- C'is Eulerian. LetH’

be a connected componentidt-k-C. SinceH —k-C is Eulerian,H’ is Eulerian. Therefore there
is a circuit in H' and henced’ contains a state fro, U {¢o}. Thus, all connected components
of H — k - C contain a state from), U {qo}.

Since the simple path is not closed, by hypothesis, the circdit= ag...a,,_1 within 5 cannot

be made of arcs fromr only. In other words(' contains at least one arc that does not belong
to A,. Assume that there is an ang € A, N Ac. Due to the priority of arcs adopted, there
exists no ard € Ay \ A, such thatdom(b) = dom(a;). Sinceo is a simple path, the arc
a; is the single arc fromAy such thatdom(a;) = cod(a;—1 (mod n))- CONsequently, we have
Hla;—1 (moa n)] < Hla;] becausd] is Eulerian. Sinc&” contains at least one arc that does not
belong toA,, there exists an arc € Ac \ A, such thatH[a] < Hla;]. It follows that there exists

a € Ac \ A, such thatH [a] is equal to the multiplicityC' in H. ]

. We assume now that there exists a cir€uin H with Q- N (Q, U {qo}) = 0. Letk > 1 be the
multiplicity of C'in H. If each connected component&f— & - C' contains at least one state from
Qs U {qo} thenC is appropriate for{ and(qy, o). Therefore we assume now thdt— & - C'is
non-empty and admits some connected compoiEmf H — k - C that contains no state from
Qs U {qo}. The situation is illustrated in Fig. 4.1. Lete Ac be such thatf[a] = k. Then
H'la] = 0 and hencd H'| < |H|. MoreoverQp N Q¢ # (), otherwise there would be no path
from Qv to Q¢ in the circulationH . We fix some state), € Q- N Q¢. We let alsar’ denote the
simple path made of all arcs frodi- \ {a}. Theno’ contains all arcs fromi N Ap:. Moreover
o’ is not a circuit andy, € Q.- as soon as’ is not empty. At this point, we claim that any circuit
C’ appropriate fotf’ and(q(,, o) is also appropriate foH and(qo, o).

Proof. Letk’ > 1 be the multiplicity ofC’ in H'. Then,

e There exists an ar¢ € Acr \ A,/ such thati'[a'] = k.
e Each connected componentBf — k' - C’ contains a state fro®@, U {q}}.

Sincec’ contains all arcs frond' that occur inH’, we haver’ ¢ Aq. ThereforeH[a'] = (H — k -
C)[a'] = H'[d']. It follows thatk’ is also the multiplicity ofC” in H. SinceH’ contains no state
from Q, U {qo}, C’ contains no state fro@, U {qo} either. Further, we have € A/ \ A,.
Sinceqp € H andq ¢ H', qo appears ifd — k’ - C’. To conclude the proof, we show simply that
the Eulerian multiset of arcH — £’ - C” is connected.

SinceH —k-C > kK -C',wehaveH — k' - C' > k- C > C. Thus all states of) are strongly
connected to each other il — k' - C'. Letq” € Qy_i.cv. It remains to show that there exists a
path fromg” to a state fromC' made of arcs frondd — &’ - C’. The claim is trivial if¢” € Q¢. If

q¢" ¢ Q¢ theng” belongs to one of the connected component& of k - C. We distinguish two
cases:

o ¢ € Qpr. Sinceq” € Qy_j.cv, there exists some ar € H — k' - C’ such thaty” =
dom(a”) or ¢" = cod(a”). Sinceq” ¢ Qc, we haved” ¢ C and hence[a”] = H'[a"].
ThenH'[a"]—k'-C'[a"] = H[a"]—K'-C"[a"] > 1. Itfollows thatq” € Qp/—i.cv. Since each
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connected component &fy/_js.c contains a state fro,» U {¢}} andQ, U {¢}} C Q¢
there exists a path frogi’ to C'in H' — k’ - C" and hence i — k' - C’.

e ¢" € Qu» where H" is a connected component &f — & - C different from H’. Then
Qu» N Qc # B otherwise there would be no path from the set of stélgs to the set of
states)¢ in H. Therefore there exists a path frafhto C' in H” and hence it — £/ - C'.

ThusH — k' - C" is connected and the circuit’ is appropriate fof and(qo, o). [ |

4.2. Building a multiset of wings from a pathological circulktion

The construction of a representative multis&tof wings from the multisef of arcs is described in
Algorithm 2. Initially W is empty and we pul = H. Hencecost(W) + cost(H) = m - cost(H) with
m = 1. This equality will act as a loop invariant of the main loopirsk a circuitC' adequate fo!
andgq is found with the help of Algorithm 1. Recall here that a citau is appropriate fod and(q, ¢)
(wheree denotes the empty path) if, and only if, it is adequateHoandg. Let k be the multiplicity of
C'in H. Then the Eulerian multisél — k - C'is connected and € Qg _i.c provided thatd — k- C'is
not empty. MoreovefH — k- C| < |H|.

We build fromC a wing W starting from¢ with C' as its cyclic component. if appears irC' then
W = k- C'is awing starting fromj. Assume thatf ¢ Qc. Theng € Qy_.c. SinceH is connected,
thereisastate € Qc N Qg _k.c. SinceH — k - C'is a circulation, there are a simple pathfrom g to
g and a simple path, from ¢ to ¢ made of arcs fromdy .. We let D denote the multiset of arcs that
corresponds to the cycha .v». Then the multisetV = D + k - C represents a wing which starts from
g. MoreoverD[a] < 2 for eacha € A becausey; and~y, are simple paths, hend® < 3 - H, because
k- C < H. Furthermore, each arc € A~ with multiplicity & in H does not occur iny .72, since it
does not occur i — k - C. We can require that; and~, are shortest paths frofmto ¢ and fromgq to
G respectively. ThusV is areducedwing. We distinguish then three cases:

1. If W = H then the wingl¥ is added toV and removed fronH leading to the empty multiset
H' =0.

2. If W < H, H— W is connected and € Qg _w then the wingl¥ is added to/V and removed
from H leading to the new circulatioil’ = H — W such thatj € Q. Sincek is the multiplicity
of C'in H, we get|H'| < |H|.

3. Otherwise the multiset of wing4’ is multiplied by3. Thencost(W)+ cost(3- H) = m - cost(H)
for somem € N\ {0}. We consider the new wing’’ = D+3k-C. We havelV’ < 3-H. We claim
that3 - H — W' is a circulation that containgif it is not empty; moreovet3 - H — W'| < |H|.

Proof. Leta be an arc fronC' such thatH [a] = k. Then3 - H[a] — D[a] = 3k because:
does not occur iny.v,. On the other hand, for each arcfrom C with H[a'] > k + 1, we have
3-H[a'|—Dlad'] = 3k+1 becauseD[da’] < 2. It follows that3k is the multiplicity ofC' in 3- H— D.
The wingW’ is added td/V and removed fron3 - H leading to the new Eulerian multiset of arcs
H' =3-H— W' Foreachu € A, we have3(H — k- C)[a] > H'[a] > 3(H — k- C)[a] — 2,
becauseD[a] < 2. HenceAy: = Ay x.c. ConsequentlyH’ is connected|H’| < |H|, and
GeQuif H #0. m
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Algorithm 2 Computing a multiset of wings
Require: A non-empty circulation and a staté € Qg

W0 # Initially W is the empty multiset of wings
H+ H # Initially cost(W) + cost(H) = m - cost(H) with m = 1
while H # 0 do
C' < AppropriateCircuitH, g, ¢) # C is adequate foff andg.
Let k£ be the multiplicity ofC' in H #k-C < HandH — k- C'is connected
if ¢ € Q¢ then
D« 0 # D € N4 is the empty multiset of arcs
Wk -C # The multiset? represents a wing such thadf < H
else
Let ¢ be some state iQc N Qy_k.c-
Let v, be a shortest path fromto ¢ made of arcs fromd g _..c. #~1 is a simple path
Let v, be a shortest path fromto ¢ made of arcs fromd g _x.c. # 9 is a simple path
Let D be the multiset of arcs that corresponds to the cygles. #ThenD < 2-H
W«—D+Ek-C # The multisetV represents a reduced wing such that< 3 - H
end if
if (H=W)or(W < HandH — W is connected and € Qg_yw) then
Add the winglV to W.
H+«H-W # cost(W) + cost(H) = m - cost(H) for somem > 1
else
W'+ D+3k-C # W' is a reduced wing; moreover we hade; _r.c = Az.g_w-
W<+—3-W # cost(W) + cost(3 - H) = m. - cost(H ) for somem > 1
Add the wingiV’ to W.
H«+3-H-W # cost(W) + cost(H) = m - cost(H) for somem > 1
end if
end while
return W

Thus, in all cases we get that’ is Eulerian and connected. Moreovee Q5 provided thatH’ is
not empty and hence the next iteration of the algorithm caxg®d analogously. Furthermore we have
|H'| < |H| henceforth Alg. 2 terminates after at m@4{ iterations.

Example 4.5. We continue Examples 1.1 and 4.2 to illustrate an executfofdlgn 2 with the VASS
depicted in Figure 1, the circulatidf = a1 +as +as+5-1 +3-1s, and the base stafe= qg. First, the
adequate circuit; with multiplicity 5 can be chosen which leads to the witg = a1 + a2+ a3 +5-15.
Since H — W, does not contairg, we putWi{ = a; + az + as + 15 - l; and getww = {WW/} and
H= 3~I§[—Wl’ =2-a1+2-as+2- a3+ 9-Iyatthe end of the first iteration.

In the second iterationl, is the unique adequate circuit féf and 4. Therefore we putVy, =
a; +az+asz+9-lpand geW = {W|, Wy} andH' = H — W5 = a; + ag + ag because this Eulerian
multiset of arcs is connected and containsThe third and last iteration selects the adequate circuit
W3 = a1 + ag + a3 which yields the multiset of winggV = {W], W, W3} depicted in Fig. 6. Observe
here thatost(W) = (3,12)" = 3 - cost(H).
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Figure 6. Multiset of wings computed in Example 4.5

It is clear that the property thabst (W) + cost(H) = m - cost(H) for somem € N\ {0} is a loop
invariant of Algorithm 2. Consequently,

Theorem 4.6. Let H be a non-empty circulation of a VASSand§ € Q- Algorithm 2 returns in
polynomial time a non-empty multisét’ of reduced wings starting fror such thatcost(W) = m -

A~

cost(H) for somem € N\ {0}.

Clearly the multiseWV built by Algorithrrl 2 is made of at mostd| wings. Moreover the valuation
of each wing in is at mosB|4! x max,c 4 H|a).

4.3. An upper bound for the number of distinct wings

Since Algorithm 2 terminates in less thaA| iterations, it provides us with a multisé¥’ of wings
starting from the arbitrarily fixed stat@ with at most|A| distinct wings. To conclude the proof of
Theorem 3.9, we show that we can make sure that the reprégentaultiset)V contains at mosp
distinct wings. This results essentially from Carathégldatheorem [22, Cor. 7.7i] which states that for
each setX C QP of p-dimensional rational vectors, any rational veator Q7 that lies in ConéX) =
M+ o+ x| n > Ly, x, € X5 A, N\, € QT liesin CongX') for someX’ C X
with | X'| < piev =121+ ...+ Ay -apWithp > n > 1,2q,...,2, € X andAy, ..., N\, € Q1. We
implement and adapt this property to integral vectors amdrabnumbers as follows:

Corollary 4.7. Let xq,...,x, € ZP ben integral vectors and; - 1 + ... + A\, - ©, = z be a linear
combination with\q, ..., A, € N. If n > p, we can compute in polynomial timg, ..., A/, € N and
m € N\ {0} such that\} - z1 + ... + A, - &, = m - z and\; # 0 for at mostn — 1 values ofi € [1..n].

Proof. We can assume that thevectorsz; are distinct and that all natural numbers,..., A,, are
positive. Sincen > p, then vectorsz; are linearly dependent: There are rational numbpers., i, not

all zero such that«) > 7" | pi - x; = 0. These rational numbers can be computed in polynomial time b
solving the followingn linear programs

i =1

for j € [1..n]. We can assume that € Z for eachi € [1..n] —because we can derive a non-zero
integral solution ta*) from a rational one with the help of Euclid’s algorithm, agakurther, we have
p; > 1forsomej € [1..n].

Recall that\; > 1 for eachi € [1..n]. Letk € [1..n] be such that

Bk — max &

Ak i€[l.n] A
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Thenyy, > 0 becausg:; > 1 for somej € [1..n]. Moreover\;.p, — A > 0 for eachi € [1..n].
Furthermore we hav®_" | (A;.pu, — Ag.pi) - & = py - 2. To conclude, we puk] = A;.pp — Ag.p1; and
observe that\), = 0. n

We can apply iteratively Cor. 4.7 to the cost of the multidavmgs W = Ao - Wy + ... + A\, - W,
produced by Alg. 2 in order to compute a multi3®t built over at mosp reduced wings starting from
¢ and such thatost(W') = m’ - cost(W) for somem’ € N\ {0}. Sincecost(W) = m - cost(H) for
somem e N\ {0}, we getcost(W') = m” - cost(H) for somem” e N\ {0}, too. Since our algorithm
is polynomial, the size of the valuation of these wings amdsiie of the number of occurrences of these
wings are polynomial in the size of the inp@sind H.

Example 4.8. We continue Example 4.5 to illustrate how Alg. 2 and Corgil7 lead to Theorem 3.9.
We have obtained that the multiset of wings= 1-W/ +1- W, + 1 - Wj satisfiescost(W) = (3,12) 7
becauseost (W) = (—18,27) ", cost(Ws) = (24, —12) T, andcost(W3) = (-3, -3) . Using a linear
programming solver yieldst - cost(W}) + 5 - cost(Ws) + 16 - cost(W3) = 0. Consequentlys can
be removed fromV and we get another pathological multiset of wings = 12 - W7 + 11 - W5 with
cost(W') = 16 - cost(W).

This example concludes the illustration of the construrctbwings from circulations. Note here that the
simpler multiset of wing$V” = 1- W/ + 2 - W, is also pathological. However, since multisets of wings
are only an intermediate format, it is no use in practice tiuce their iteration factors at this point.

5. Construction of a flower from a multiset of wings

In this section, we fix a non-empty circulatidi and present a proof of Theorem 3.4. We observe first
that it is possible to build a flower directly frofi as follows: First, one builds a cycle that corresponds
to H; next, one extracts petals from it by detecting iteratetbstalong the cycle; finally, one can reduce
the number of petals to less thanas we will see below. However this approach requires expaie
space since the length of the cycle is exponential in thedittee circulation (and may be exponential in
the size of the VASS as shown by Example 2.5). For that reason, we adopt anotiagegpf that relies
on the representation by wings.

First, we apply Theorem 3.9 to get a non-empty multidéof reduced wings starting from a fixed
stateg such thatost(W) = m - cost(H) for somem € N\ {0} andW is built over at mosp distinct
wings. Then we build from¥V a flower F with at mostp petals and such thabst(F) = m/' - cost(W)
for somem’ € N\ {0}. To do so, we proceed in three steps. We observe first thaitjwety, an iterated
wing can be regarded as a flower. Formally we show that for @éieh w = ~1.75.72 with valuation
k, and for allz > |Q| + 1, we can build a flowefF,, , starting from the starting state gf such that
cost(w”) = cost(y1) + cost(Fe, z) + cost(y2). Moreover,F,, ., does not iterate its calyx. Next we show
how to connect the flowers associated to each iterated winy of order to get a single floweF. At
this point, we assume that each wing is iterated at lggist- 1 times. For that reasor¥; has the same
cost as\, up to a multiplication factor. This flower has at mask |Q| x p petals. Finally, we show
how to use again Cor. 4.7 to reduce the number of petals ireffresentative flower to less than

As opposed to the previous section, we do not give the castiiruas formal algorithms. We rather
provide sufficient details to explain and to justify the gibbrocedure. We will also illustrate the con-
struction of flowers on our simple running example of Fig. 1.
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Example 5.1. We consider again the VASS from Fig. 1 and the two reduced sving= a1./{°.(az.a3)
andwy = (aj.a2).1.a3 with valuation15 and9 respectively. The cycle;.w? is pathological since
cost(wy.w3) = (30, 3) . For each natural number> 2, we havecost(w%) = cost(ay.az)+cost(Fa )+
cost(a3) whereF; , denotes the flower with an empty calyx and two petglshat is iterated x z times,
andags.ai.ao that is iteratedr — 1 times.

The transformation of an iterated wirfg; .7%.72)® into a flower is not always as easy as in the above
example, because the connecting cygley, needs not to be simple in general. Consequently, we have
to extract petals from it.

5.1. From an iterated reduced wing to a flower

Consider a reduced wing = ;.74 .72. The special case whegeconsists only in its cyclic component
is trivial. Sincew is reduced, we can assume that bethand~; are not empty and their starting state
differ. The following basic remark is illustrated by Fig. 7.

Figure 7. Extracting intrinsic petals from the connectigigle of a wing

Proposition 5.2. Let g andq’ € Q be two distinct states ang and~- be simple paths from to ¢’ and
from ¢’ to ¢ respectively such that differs from the domain of each arc of andq differs from the
domain of each arc of,. We can compute in polynomial time

e anatural number > 1 smaller than the length ofi,
e n + 1 statesy, ..., q, € Q with g9 = g andg,, = ¢/,
e n simple pathsy,...,o,_1 whereo; is a path fromy; to ¢; 1, and
e n simple pathsr, ..., o],_, wherec! is a path fromy; ; to g;,
such thaty, = og...0n-1,72 =0}, ... 0}, and for each € [0..n — 1], the cycles;.o! is a circuit.

Proof. We proceed by induction over the length-af The claim is clear ify;| = 1 because the cycle
~1.72 is simple. Induction step. We can assume that the eygcle is not simple: We can find along the
path~; .72 some statey that occurs twice and such that no other state occurs twitvecka these two
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occurrences of. Theng # ¢ becausey; is a simple path ang differs from the domain of each arc of
~o. Similarly ¢ # ¢'. Sincey; and~, are both simple paths, we have

e 71 = v1.7{ wherey] leads fromy to ¢ and~;’ leads fromg to ¢’;
e 2 = 4.4 wherey/ leads fromy’ to ¢ and~] leads fromg to g.

Moreovery; and~4 are not empty sincg # ¢'. Since no state occurs twice between the two occurrences
of ¢, the cycley! .4 starting fromq is a circuit. It is now sufficient to apply the induction hyhesis to
4 and~4 becauseéy;| < |y1| — 1. ]

This decomposition allows us to represent an iterated wsnag ffower.

Proposition 5.3. Letw = ;.75 .72 be a reduced wing starting frogwith valuationk > 1 andq’ be the
starting state of its cyclic componeng. Letz > |Q|. We can build in polynomial time a floweF,,, ;.
starting fromq’ with at most2 x |Q| — 1 petals such that

¢ the calyx is not iterated,
e the first petal at/ is iterated at least twice,
o z - cost(w) = cost(yy) + cost(Fy ) + cost(y2).

Proof. The particular case where= ¢ is trivial becausev is simply an iterated circuit starting from
¢'. Consequently both connecting pathsand~, are empty: The floweF,, , has an empty calyx and it
admitsyy as unique petal. We assume now that ¢'. We apply first Prop. 5.2 and get a natural number
nwithn € [1..]Q|], n + 1 statesgo, . .., g, € Q with g9 = g andgq,, = ¢/, n simple pathsr, ..., 0,1
whereo; is a path fromg; to ¢; 11, andn simple pathss, ..., o/, , whereo! is a path fromg;,; to

¢; such thaty; = og...0n—1, 72 = 0},_; ...0y, and for each, the cycleo;.o] is a circuit. We have

x > |Q| = n. The situation is depicted in Fig. 7. We consider

e the circuita; = o}.0; that starts fromy; ., for eachi € [0,n — 1],
e the simple pattt; = 041 ... 0,1 from ¢;44 to g, for eachi € [0,n — 2], and
e the simple patl$; = 0,,_, ... 0}, from g, to ¢;, for eachi € [0,n — 2].

Clearly the path

k(z—n-+1 _ _ _ _
v =A@ (k80 Y Bo). (V- BLa 2B - (VB0 B By ).l

is a cycle that starts froml. Moreover this cycle corresponds to a flow&r ,, with 2n — 1 petals and a
calyx equal ta3(,.50.31.51 - . . B, _5.0n—2 that is not iterated. This flower starts frarhwith a first petal
~o that is iteratedc(z — n + 2) times. Observe that,_; occurs in ther — n occurrences of the petal
an,—1 and in each of the — 1 pathsg;. Further, for eacl) < j < n — 2, the patho; occursz — 1 — j
times within the petak; and;j times within the calyx. The occurrences of the opposite spa;hare
analogous. Thus we have

|
—_

n

cost(Fuz) = 2 - cost(y§) 4+ (. — 1) - Y (cost(a;) + cost(oh)) = - cost(7§) + (z — 1) - cost(y1.72).

I
o
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5.2. From a multiset of wings to a flower

We explain now how to connect the flowers associated to @#draings with a common starting state in
order to build a single representative flower ¥t Recall that these flowers come equipped with the two
connecting paths back and forth from the fixed starting staMoreover they do not iterate their calyx.
For that reason, we can join easily these flowers into a sioigéethat does not iterate its calyx either.
However, some new petals may appear in this process, as shotlhie next example.

Example 5.4. We continue Example 5.1 and consider the multiset of wings- 2 - wy. Making use
of the representation of the iterated wing by the flowerF, » we shall obtain a flower description of
w1 + 2 - wy as a new flowerF,, 2., = a1.li’.(ag.a3.a1).a2.138.(a3.a1.a2).a3 with four petals:iy, o,
a9.a3.41, andag.al.ag.

Proposition 5.5. Let WW be a multiset of wings starting from built over at mostp distinct reduced
wings. We can build in polynomial time a flowgt with at most3 x |Q| x p petals, no calyx iteration,
and such thatost(F) = m - cost(W) for somem € N\ {0}.

Proof. Letwy,...,w;_1 be thel reduced wings starting frofithat occur at least once V. We have
cost(W) = L2 Wlwi] - cost(w;). We can assume w.l.0.g. thet[w,] > |Q| + 1 for each wingw;: If
this property does not hold, we can replageby (|Q| + 1) - YW —due to the multiplication factom in
the statement of Prop. 5.5. Each wingis made of a cyclic component  starting fromg; and two
pathsy; ; and-y; > from ¢ to ¢; and fromg; to g respectively. Thew; = 7i71.756.7i72 wherek; > 1 isthe
valuation ofw;.

By Prop. 5.3, the cyclafiow[”i} (yi.2.7:.1)"V i1 is equivalent to a floweF; with at most2 x |Q| —1
petals, no calyx iteration, and such that the first petgl & iterated at least twice. In order to connect
thesel flowers, we consider thé pathsr; = 7i2.7i41 (mod 1),1 ffOM ¢; 10 g1 (mod 1) fOr €achi €
[0..I — 1]. Although~y; 2 and~; ;1 (mod 1),1 @re simpley; need not to be simple. However,f is not
simple, it can be decomposed into a simple path followed hycait that acts as a petal, followed by a
simple path, similarly to the proof of Prop. 5.2: It is suffiot to find alongs; some state that occurs
twice and such that no other state occurs twice between theseccurrences of. Let~z, denote the
cycle corresponding to the flowd;. Then the cycley = vz, .k0.77, .51 ... VF,_, -ki—1 can be regarded
as a flowerF, when all but one occurrences of first petal Bf are connected to the beginning of
and the last one is connected to the endipf; (1,04 1. This flower has at mos2 x [Q[ + 1) x [
petals and no calyx iteration. Observe t@i;é cost(k;) = Zﬁ;é cost(i2.7i,1). Hencecost(F,) =
Zé;(l) cost(F;) + cost(vi2.7i1) = Zé;(l) W]w;] - cost(w;) = cost(W). ]

5.3. Reducing the number of petals in a flower

To conclude the proof of Theorem 3.4, we need to reduce thdauof petals inF from 3 x |Q| x p to

p. This is done by Cor. 5.8 below. Due to Carathéodory’s thegrif there are more than+ 1 petals
then one of them is redundant and can be removed, providesvéhadapt the iteration numbers of the
calyx and of the remaining petals. However this removal d¢dlgecan lead to connection paths between
the remaining petals that are no longer simple paths. Thettyssome new petals can appear also along
this last step. This remark is formalized by the followingetvation and illustrated by Fig. 8.
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Figure 8. Reducing the size of the calyx

Proposition 5.6. Let qq, ..., q, ben + 1 states andk, ..., x,_1 ben simple paths such that; leads
from ¢; t0 ¢; 1. Lety = kg ... k,—1 be the resulting path fromp to ¢,,. If 7y is not simple then we can
compute in polynomial time

e i+ 1 statesy, ..., q, with & < n, ¢, = qo, andg;, = qn,
e ksimple pathss, ..., s)_, such that; leads fromyg; to ¢;_ ,, and
e k — lcircuitsot, ..., o, which start fromg;

such thaty = k.0 .k 0 ... 0},.K),.

Proof. We proceed by induction over. The base case for = 1 is trivial becauses is simple.
Induction step: We assume that> 2 and~ is not simple. We can find alongsome state that occurs
twice and such that no other state occurs twice between theseccurrences of. We assume that
these two occurrences gftake place in:; andxj with j < j'. The paths; can be split into two simple
pathsk; 1 andr; o such thats; ; leads fromg; to ¢ andx; » leads fromg to ¢;,1. Similarly, the path
; can be split into two simple paths; ; andx;, » such thats; ; leads fromg; to ¢ andxj o leads
from q'to ¢;.41. Thenthe cycler’ = kj2.5j41 ... Kj—1.kj 1 Starting fromg is non empty and simple.
Furthermore the path; = o ...xj_1.55,1 from go to g is made of at mosf + 1 simple paths, where
j+1 < j < n-—1. Similarly, the pathy, = kj 2.6j41 ... k-1 from g to g, is made of at most
n — j’ simple paths. Thus we can apply the induction hypothesistiofy and~,; and get the expected
decomposition ofy with at mostj + 1 + n — j' < n component simple pathg. |

As already stressed by Example 3.6, the iteration of thexdalgecessary to get a flower with at most
p petals. Thus, with no surprise, removing petals requireglyio allow for the iteration of a calyx.

Proposition 5.7. Let F be a flower withk > p + 1 petals. We can compute in polynomial time a flower
F' such thatost(F’) = m - cost(F) for somem € N\ {0} and

e either 7’ has at mosk — 1 petals,

e or 7' hask petals and the length of its calyx is strictly smaller tham léngth of the calyx of~.
Proof. Let F be a flower consisting of

e asequence df > 2 petalsoy, ..., o0r_1, Where each circuit; starts fromy;,
e acalyxsyg ... kg1, wheres; is a simple path frong; 10 ¢; 11 (mod )

e and a sequencey, ..., ng of natural numbers, with; > 1.



84 F. Avellaneda and R. Morin/ Catching a Structural Bug withlaver

We havecost(F) = ny - cost(kg . .. kKk—1) + 2;‘:01 n; - cost(o;). According to Cor. 4.7, we can compute
in polynomial time a sequence, . .., n},_, of natural numbers such that" ! n/ - cost(c;) = m -
(cost(F) — ny - cost(ko ... kk—1)) for somem € N\ {0} andn] # 0 for at mostk — 1 values of
i € [0..k — 1]. We consider the path

,)/ = 0_3/0.1%0.0?,1 R 0’:5_11/%]{,1.(,‘4:0 R lﬁkfl)m'nk_l
We havecost(y') = m - cost(F). If the calyxxy . .. xx_1 Of F is empty,y’ corresponds to a flower with
at mostk — 1 petals. Therefore we can assume now that the calyX isfnot empty.

We assume first that for eache [0,k — 1] and eachr € [2..k] such thata]_ (mod k) = 0 for all
i'€ [1,r—1], the paths; = K;.Ki11 (mod k) - - - Fitr—1 (mod k) IS SiMple. Ifn; # 0 for at least twa’s then
~/ corresponds to a flower with at mdst- 1 petals. On the other hand,if # 0 for at most one then
the calyxrq...x;_1 IS @ circuit andy’ corresponds to a flower with at mdspetals and an empty calyx.

We can assume now that there are [0,k — 1] andr € [2..k] such thata] (moa ) = 0 for all
i' € [1,r — 1] and the paths] = K;.K;11 (mod k) - - - Kitr—1 (mod k) IS NOtSIMple. At this point we can
use Prop. 5.6 to regard as a flower with at most petals and whose calyx is smaller than the calyx of
F. [

Corollary 5.8. Let.F be a flower. We can compute in polynomial time a flo#&mwith at mostp petals
and such thatost(F’) = m - cost(F) for somem € N\ {0}.

Proof. Observe that Prop. 5.7 yields a flower with at mst 1 petals if the calyx of the given flower is
empty. Consider a flower with > p + 1 petals. First we apply Prop. 5.7 iteratively until we get avito
with at mostk — 1 petals. Next we iterate this first step until we get a flowehwit mostp petals. =

Example 5.9. We continue Example 5.4 to illustrate the last step of theofoad Theorem 3.4. The
ﬂOWEI’flerQ.wQ = a1.l%5.(ag.ag.al).ag.lég.(ag.al.ag).ag has four petalsll, l9, as.as.aq, andag.al.ag.
Sinceas.as.a1 andag.aj.as have the same cost, one of them can be removed and we get tHwew
F' = a1.13% (az.a3.a1)%.a2.13% a3 with only three petals. Further, using a linear programnsotyer
yields: 12 - cost(l;) + 9 - cost(ly) + 5 - cost(ag.az.a;) = 0. Similarly to the proof of Cor. 4.7, we
observe thab/2 > 12/15 > 9/18, so we can remove the pet@l.as.a; from 7' and get a last flower
F" = a0} .a2.152.a3.(a;.a2.a3)* with only two petals/; andiy, and a calyx that is iterated 5 times.
Note thatcost(F”) = 5 - cost(Fiy +2.ws)-

This example concludes the illustration of the construrctba flower from a multiset of wings. Note
here that the simpler floweF"”’ = a;15.a2.13.a3 is also pathological and shares wi#if its structure:
They have the same petals and the same calyx. Thereforegétiqa, it might be useful to reduce the
iteration factors of the resulting flower at the end of thisgass, in order to provide the user with a
simpler counter-example.

6. Conclusion and future work

In this paper we tackle the problem of illustrating a struakilug detected as a pathological circulation
in a concise way. We propose to represent counter-examplesgréictural termination in the form of a
flower, that is, iterated circuits connected by simple pathsr main result shows how to compute such
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a structure in polynomial time (Th. 3.4) from any given pddigical circulation. Further we need only
iterated circuits in such a flower. Interestingly this résuyiplies immediately to structural boundedness.
We can draw a parallel between this setting and the emptpresdem for Blichi automata. Accepting
infinite words are detected by means of lasso-like warads wherew leads from the initial state to an
accepting state andis a circuit over this accepting state. Besides the titleh paper is inspired by
Trivedi's blog [25] that suggests another title for the seahipaper [26]. Indeed we claim that flowers
should play the réle of lassos when it comes to structu@benrties of a VASS.

We give a slightly involved construction of flowers that makese of an intermediate representative
format as a multiset of wings (Th. 3.9), a result first presérin [2]. It would be nice to build flow-
ers from circulations directly, possibly with adequatecgits as inputs. However, so far, we failed to
design such an alternative construction or any simpledagproach. The point is that adding a petal
to a flower may require to adapt and, more important, to iketta¢ calyx. This constraint corresponds
to the multiplication by 3 of the given circulation (and thartially constructed multiset of wings) in
Algorithm 2 in order to keep the remaining circulation cocteel when a new wing is built. The iteration
of the calyx makes the insertion of further petals more difficintuitively, the goal would be similar
to building a representative multiset of wings such thaheaing is iterated the same number of times.
Besides, we have observed that flowers that do not iteraitectlgx are easier to handle. Furthermore
the construction of a flower from a multiset of wings consessentially in concentrating the iteration
factors in the petals and simplifying the description of tbanecting paths into a single calyx. Anyway,
a simpler construction of a flower from a circulation wouldva¢uable.

Several technical steps detailed in this paper rely on thiéptication factor allowed from the cost
of the given circulation to the cost of the representativevéio This feature is necessary to keep the
structure connected along its construction and to redue@timber of iterated components at the end.
It is also useful to regard iterated wings as flowers. We hdseived that it is a good idea to try to
reduce the values of iterations within a flower built in thiayvin order to get a new simpler flower
with the same structure but with no particular link with thestof the original pathological circulation.
Finding alternative iteration values with a bounded sizevan minimizing their sum by integral linear
programming will probably prove to be useful in practice &t @ simpler flower. Finding shortest
counter-examples is often desirable in automated veliificabecause they are easier to analyse, see e.g.
[5, 16]. Thus, considering pathological cycles built oven@imal number of arcs, or with a minimal
number of interacting places, is certainly valuable. Unifioately, searching for such circulations is NP-
hard [2]. Still, it would be interesting to design a methoattonpute such a circulation effectively using
the powerful solvers available nowadays.

Message sequence graphs are a well-known formalism toildescommunication protocols by
means of partial orders of events called message sequeaits [ 10]. As discussed in [1], this model
can be regarded as a special case of VASSs when the latterosidgal with a partial-order semantics.
In this way, new features can be stirred into message segugaphs such as message loss, message
duplication, counters or timers. For that reason we foundeful to develop a prototype that implements
the model-checking and the reachability techniques fromIfithe future our verification tool should
benefit from the description of structural bugs by flowersenged in this paper. The model of VASS is
also similar to communicating finite-state machines (CANwever the latter adopt a FIFO restriction
on the ordering of messages along executions [3]. Many ptiepalecidable for VASS are undecidable
for CFM due to this restriction, in particular structurairténation [20]. Thus cycles and circulations are
not representative of structural bugs in this context andesults have no chance to apply to this model.
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