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Abstract. Checking the structural boundedness and the structural termination of vector addition
systems with states boils down to detecting pathological cycles. As opposed to their non-structural
variants which require exponential space, these properties need polynomial time only. The algo-
rithm searches for a counter-example in the form of a multiset of arcs computed by means of linear
programming. Yet the minimal length of a pathological cyclecan be exponential in the size of the
system which makes it difficult to visualize and to analyze the detected bug in details.

We propose to describe pathological cycles in the form of particular cycles called flowers. The latter
are made of petals which are iterated circuits connected by simple paths that form a calyx. We
present an algorithm that builds in polynomial time a flower from the multiset of arcs that represents
a pathological cycle. Interestingly the number of petals within a flower is at most equal to the
dimension of vectors which helps to describe in a concise waythe underlying bug and to analyse it.

Keywords: Vector addition system with states, structural properties, counter-example, dynamic
graph, zero-cycle.

1. Introduction

Consider a set of reactions that takes place among a collection of particles such that each reaction con-
sumes a multiset of available particles and produces a linear combination of other particle types. This
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kind of framework can be formalized by a vector addition system [13] or, equivalently, a (pure) Petri net.
In this case, particles are calledtokensand particle types are calledplaces. Consider in addition a control
state that determines which reactions can occur, and such that the occurrence of a reaction leads to a
possibly distinct control state. Then the model becomes formally a vector addition system with states
(a VASS), a notion introduced in [11]. In this paper we are interested in twostructural propertiesfor
VASS, that is, properties that do not depend on a particular initial distribution of particles among places.
In this way, we consider the initial marking as a parameter ofthe system.

The first problem we consider asks whether the number of particles in the system remains bounded
for each initial configuration. In other words only finitely many distinct configurations can be reached.
Since particles often represent the consumption of resources, such as messages in channels, this first
problem asks whether there exists some amount of resources sufficient to cope with all configurations
reachable from any fixedfiniteset of potential initial configurations. A second basic issue is to check that
a given system terminates, i.e. whether there is no infinite execution, for each initial configuration. Thus
we aim at checking that a system eventually deadlocks. Although one usually tries to avoid deadlocks
in concurrent systems, termination remains in some cases a basic problem in formal verification: In
particular non-termination can result from livelocks in concurrent programs when components fail to
achieve their tasks.

Structural properties regard the initial configuration as aparameter of the system. However, they are
also considered in practice for the analysis of systems witha fixed initial configuration. The reason is that
these stronger properties turn out to be easier to check thantheir non-structural variants [17, 23]. More
precisely checking boundedness for Petri nets provided with an initial configuration requires exponential
space [8, 19] whereas structural boundedness is polynomial[8, 21]. Furthermore a similar gap exists
between termination [4, Th. 3] and structural termination [24].

In order to describe a distributed system, it is often convenient to use avectorof control states whose
components are the local states of each process. Then particles represent messages within channels.
This model is called aparallel-composition-VASS[17, 18]. It is close to the notion of a communicating
finite-state machine [3] but with non-FIFO message exchanges. Similarly to the simulation of a VASS
by a Petri net, a parallel-composition-VASS can be simulated by a Petri net with additional places whose
marking represent the current vector of control states. Interestingly structural properties are not preserved
by this simulation. Besides checking the structural boundedness of a parallel-composition-VASS is NP-
complete [17] whereas this problem can be solved in polynomial time in the particular case of Petri nets
[8, 21].

We observe first in Section 2 that verifying the structural boundedness or the structural termination
of a given VASS boils down to checking the costs of cycles within the system viewed as a weighted
directed graph: A cycle is pathological for structural boundedness (resp. structural termination) if its arc
weights sum to a positive (resp. non-negative) vector. Consequently these two problems are very close
to the detection of a zero-cycle in dynamic graphs [12], which asks if there exists a cycle with a zero
cost. In [15] Kosaraju and Sullivan showed how to decide the existence of such a cycle in polynomial
time. Besides this problem was proved later to be equivalentto the general linear programming problem
[6]. The idea is twofold. First cycles are identified with particular multisets of arcs calledcirculations.
Second circulations with zero cost appear as solutions to some linear program. This technique adapts
easily to the detection of pathological cycles for structural boundedness or structural termination. The
resulting algorithm returns in polynomial time a circulation that represents a pathological cycle if such a
cycle exists.
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When the model of a system does not satisfy a given property, formal verification tools usually pro-
vide users with a counter-example execution in the form of a sequence of atomic steps that describes
an unexpected behaviour. In this paper, we tackle the problem of providing a useful description of a
pathological cycle for a structural property. The point is that the number of times an arc occurs in
a pathological cycle can be exponential in the size of the given VASS, even though the time needed
to compute the corresponding multiset of arcs is only polynomial. Consequently listing the sequence of
arcs occurring along such a cycle is prohibitive in general.A first approach consists in providing a partial
description of the detected pathological cycle (a sort of slice of the counter-example) as the set of all arcs
occurring in this cycle —or simply the set of places interacting in the reactions performed by these arcs.
However, this information may not be sufficient to understand fully the detected bug. In particular, it
does not determine the minimal configuration required to execute a detected pathological cycle.

In the particular case of a VASS with a single state —that is tosay: a pure Petri net— a multiset of arcs
can be regarded as a multiset of cycles with a common startingstate. Moreover, due to Carathéodory’s
theorem [22, Cor. 7.7i], we need at mostp distinct arcs to describe a structural bug if the given VASS has
p places. More precisely, givenn integralp-dimensional vectorsx1, ..., xn ∈ Zp and a linear combination
λ1 · x1 + ...+ λn · xn = z with λ1, ..., λn ∈ N, if n > p then we can compute in polynomial time other
coefficientsλ′

1, ..., λ
′
n ∈ N such thatλ′

1 · x1 + ...+ λ′
n · xn = m · z for somem ∈ N \ {0} and moreover

λ′
i 6= 0 for at mostn− 1 values ofi ∈ [1..n] (Cor. 4.7). Thus each pathological cycle can be represented

by p elementary cycles of length 1 and with a common starting state. In this work, we want to extend
this property to any VASS:We aim at decomposing a given pathological cycle in the form of a particular
multiset of connected cycles. Moreover each component cycle should be easy to depict and the number
of distinct cycles in this multiset should be at most equal tothe number of places in the given VASS.

We introduce in Section 3 the notion of a flower. Roughly speaking, a flower consists of iterated
circuits connected by simple paths. Our main result assertsthat we can compute in polynomial time such
a structure that corresponds to a given multiset of arcs which represents a pathological cycle. Moreover
the number of distinct circuits we need is at most equal to thenumber of places. Thus we propose to
describe a structural bug to the user in the form of a small number of circuits and a connecting cycle
together with the number of times each of these cycles occurs. Note that this information allows us to
compute the minimal configuration required to execute this new pathological cycle. This information is
useful to the user when structural properties are checked instead of their non-structural variants, if the
abstraction process yields a false counter-example. Then the analysis of the detected pathological cycle
can lead to a refined model with a larger set of initialized places.

The construction of a flower we present in this work relies on another class of particular cycles, called
wings, introduced in [2]. Intuitively, a wing consists of a circuit provided with two simple paths back and
forth from a fixed starting state to a state along the circuit.Additionally, thevaluationof a wing deter-
mines the number of iterations of its cyclic component. An intermediate result is established in Section 4.
We show how to compute in polynomial time a multiset of wings with a common starting state that cor-
responds to a pathological cycle given as a multiset of arcs.Moreover the common starting state of these
wings can be chosen arbitrarily and, here again, the number of distinct wings we need is at most equal to
the number of places. We show in Section 5 how to build a flower from such a multiset of wings.

Example 1.1. Along this paper, we shall use as a running example the 2-dimensional VASS depicted in
Figure 1. This VASS has three statesq0, q1, andq2 and five weighted arcsa1, a2, a3, l1, andl2. The
cost of the cycleγ = a1.(l1)

5.a2.(l2)
3.a3 is (1, 4)⊤. So this cycle is pathological for both structural
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termination and structural boundedness: This VASS is not structurally bounded and it does not terminate
structurally. The cycleγ is actually a flower withl1 andl2 as iterated circuits whilea2 anda3.a1 are two
connecting paths. Of course, it is easy to guess a pathological flower in this simple case. This running
example is only used to illustrate the various concepts along the paper and the algorithm adopted to
compute a flower. Observe here that the two cyclesω1 = a1.(l1)

10.a2.a3 andω2 = a1.a2.(l2)
6.a3 are

actually two wings starting fromq0 with valuations 10 and 6 respectively. The cost of the cycleω1.ω2 is
(2, 8)⊤ so the multiset of wingsω1 + ω2 is pathological, too.
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(
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a3
(

−1
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)
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+3
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)

l2

Figure 1. A vector addition system with states

2. Background

Let p be a fixed non-zero natural number. A vector addition system with states is a directed graph whose
arcs are labeled by vectors fromZp.

Definition 2.1. [11] A vector addition system with states(for short, a VASS) is a pairS = (Q,A) where
Q is a finite set of states, andA ⊆ Q× Zp ×Q is a finite set of arcs labeled by vectors fromZp.

Throughout the paper we letS = (Q,A) be a VASS. We let|Q| and |A| denote the cardinalities ofQ
andA respectively. The source and the target of a labeled arca ∈ A are denoted bydom(a) andcod(a)
respectively. We letcost(a) ∈ Zp denote the column vector labeling each arca ∈ A. The size of a VASS
S = (Q,A) is size(S) = |A| × (2 × ⌈log2(|Q| + 1)⌉ + p × (1 + ⌈log2(1 + vmax)⌉)) wherevmax is the
maximal absolute value of coefficients of vectors labeling arcs inS.

2.1. Basics

Let S = (Q,A) be a VASS. A configuration is a pair(q, r) ∈ Q × Np consisting of a control stateq
and a multiset of available particlesr. A labeled arca ∈ A is enabled at the configuration(q, r) and
leads to the configuration(q′, r′) if dom(a) = q, cod(a) = q′, andr + cost(a) = r′. An execution of
S from an initial configuration(qin, rin) is a sequence of labeled arcsa1...an ∈ A⋆ such that there are
configurations(q0, r0), ..., (qn, rn) for which (q0, r0) = (qin, rin) and for eachi ∈ [1..n], the labeled
arcai is enabled at(qi−1, ri−1) and leads to(qi, ri). Then the configuration(qn, rn) is reachable from
(qin, rin).

A path is a sequence of arcsγ = a1...an ∈ A⋆ such that we havedom(ai+1) = cod(ai) for each
i ∈ [1..n − 1]. A pathγ = a1...an ∈ A⋆ is closed ifn > 1 anddom(a1) = cod(an). A closed path is
called acycle. A pathγ = a1...an ∈ A⋆ is simpleif dom(ai) 6= dom(aj) for all distincti, j. A circuit is
a simple and closed path. The cost of a pathγ = a1...an is the vectorcost(γ) =

∑i=n
i=1 cost(ai). Further



F. Avellaneda and R. Morin / Catching a Structural Bug with a Flower 65

the cost of a multiset of arcsx ∈ NA is cost(x) =
∑

a∈A x[a] · cost(a) and the cost of a finite multiset of
pathsW is cost(W) =

∑
γ∈A⋆W[γ] · cost(γ). Let v andv′ be two integral vectors withn coordinates:

v = (v[1], ..., v[n]) andv′ = (v′[1], ..., v′ [n]). We put as usualv > v′ if v[i] > v′[i] for eachi; v > v′ if
v[i] > v′[i] for eachi; andv  v′ if v > v′ andv 6= v′.

2.2. Structural properties and characterizations with cycles

A VASS provided with an initial configuration(qin, rin) terminates, if there is a natural numberk such
that the length of each execution ofS from (qin, rin) is at mostk. In other words, an initialized VASS ter-
minates if and only if it has no infinite execution. In this paper, we are interested instructural properties,
that is, properties that do not depend on an initial configuration.

Definition 2.2. A VASS S terminates structurallyif it terminates for all initial configurations.

The structural termination problem for vector addition systems asks whether a given VASS has no
infinite execution for all initial configurations. We observe first that this question boils down to searching
for particular cycles inS. This fact is easily established by Kőnig infinity lemma [14] and Dickson’s
lemma [13, Lemma 4.1].

Proposition 2.3. A VASS S terminates structurally if and only if there is no cycleγ with cost(γ) > ~0.

A VASS provided with an initial configuration(qin, rin) is boundedif it admits only finitely many
reachable configurations. A VASSS is structurally boundedif it is bounded for all initial configurations.
Similarly to Proposition 2.3, checking the structural boundedness of a VASS boils down to detecting a
cycle with a non-negative non-zero cost: A VASSS is structurally bounded if and only if there exists
no cycleγ with cost(γ)  ~0. In the sequel of this paper, we focus on structural termination, only.
Consequently witnesses of non-satisfiability are formalized by the following notion of a pathological
path. However all results presented in this paper adapt immediately to structural boundedness.

Definition 2.4. A cycle γ in a VASSS is pathologicalif cost(γ) > 0.

Example 2.5. Consider the VASS with a single state and six self-loop arcs labeled respectively by the
six following 6-dimensional vectors:

t1 =
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; t2 =
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0

0
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; t3 =
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; t5 =




0

0
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−2

1

0




; t6 =




0

0

0

0

−2

1




It is easy to see that each pathological cycle needs all arcs because of their pairwise dependencies. More-
over a pathological cycle that contains one occurrence oft6 needs 2 occurrences oft5, 4 occurrences oft4
and hence 4 occurrences oft3, 2 occurrences oft2 and one occurrence oft1. Therefore the pathological
cycleγ = t1.(t2)

2.(t3)
4.(t4)

4.(t5)
2.t6 has a minimal length. We can easily generalize this example to
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a VASS (with a single state) made of2 ×m arcs, whose pathological cycles have a length greater than
2× (2m − 1).

This example shows that the minimal length of a pathologicalcycle can be exponential in the size of
the given VASS. For that reason, an abstract view of cycles isnecessary to deal with them in polynomial
time. Following [6, 15], we shall represent cycles of a VASSS as particular multisets of arcs called
circulations.

2.3. Circulations vs. cycles

Let x ∈ NA be a multiset of arcs. We denote by||x|| = |{a ∈ A | x[a] > 1}| the number of distinct
arcs inx and byAx the support ofx, that is to say the set of arcsa ∈ A such thatx[a] > 1. Thus
||x|| = |Ax|. Theunderlying graphGx of x is the (undirected) graphGx = (Qx, Ex) where the set of
verticesQx = {dom(a) | a ∈ Ax} ∪ {cod(a) | a ∈ Ax} collects the source and the target of all arcs
in x and the set of edgesEx = {{dom(a), cod(a)} | a ∈ Ax anddom(a) 6= cod(a)} keeps track of
all connections induced by arcs inx. The size ofx is size(x) =

∑
a∈A⌈log2(1 + x[a])⌉ because the

coefficients ofx are encoded in binary.
A multiset of arcsx ∈ NA is calledconnectedif Gx is a connected graph. Letx ∈ NA and

K1, ...,Kn ⊆ Qx be the connected components ofGx. For each1 6 i 6 n and eacha ∈ A, we put
xi[a] = x[a] if dom(a) ∈ Ki andxi[a] = 0 otherwise. Thenx = x1+ ...+xn and the multisetsxi ∈ NA

are called theconnected components ofx.

Definition 2.6. A multiset of arcsx ∈ NA is Eulerian if
∑

dom(a)=q x[a] =
∑

cod(a)=q x[a] for each
stateq ∈ Q. A connected and Eulerian multiset of arcs is called acirculation.

Thus a multiset of arcs is Eulerian if for each stateq the number of arcs incident fromq equals the number
of arcs incident toq. Note that ifx andy are Eulerian, thenx + y is Eulerian. If moreoverx 6 y then
y − x is Eulerian, too. Themultiplicity of a non-zero multisetx ∈ NA \ {~0} within a multisety ∈ NA is
the greatest natural numberk such thatk · x 6 y.

Each cycleγ = a1...an of S is represented by the multiset of arcsxγ =
∑i=n

i=1 ai, i.e. xγ [a] is the
number of occurrences ofa in γ. Sinceγ is a cycle, the multiset of arcsxγ is non-empty, Eulerian and
connected. For instance, continuing Example 1.1, the multiset of arcsa1 + a2 + a3 + 5 · l1 + 3 · l2 is
the circulation corresponding to the cycleγ = a1.l

5
1.a2.l

3
2.a3. Conversely, each non-empty circulation

corresponds to a cycle ofS: This is an immediate variant of Euler’s theorem [7, Th. 1.8.1].

Proposition 2.7. Let x ∈ NA be a non-empty circulation. Then there exists a cycleγ such thatxγ = x.

Observe here that the directed graph made of the set of arcsAx for a circulationx is strongly connected.
In [15], Kosaraju and Sullivan showed how to detect a cycle with a zero cost in polynomial time by

a reduction to linear programming. We explain here why this technique can be adapted with no effort
to the verification of structural termination. In fact, it issufficient to replace a vector equalityx = ~0 by
x > ~0 in part of the linear programming problem considered. Givena VASSS = (Q,A), a first step
consists in listing the subsetA′ ⊆ A of all arcs that appear in a multisetW of cycles withcost(W) > ~0.
To do so, for each arcb ∈ A, one considers the following linear programming problemPb with |A|



F. Avellaneda and R. Morin / Catching a Structural Bug with a Flower 67

rational variablesx ∈ QA.

(Pb)





∑
cod(a)=q x[a] =

∑
dom(a)=q x[a] for eachq ∈ Q

x[a] > 0 for eacha ∈ A

x[b] > 1
∑

a∈A x[a] · cost(a) > ~0

It is clear thatb belongs toA′ if and only ifPb has a solution. In that case, we denote byxb a solution to
this problem withxb ∈ NA. We need here to derive an integral solutionx′ ∈ NA to Pb from a rational
onex ∈ QA. To do so, one can use Euclid’s algorithm to compute the leastcommon multiplem of the
denominators of all coefficients ofx and putx′ = m · x. Next, three cases appear:

1. If A′ is empty thenS terminates structurally, because no arc appears in a pathological cycle.

2. If A′ is non-empty and strongly connected thenS does not terminate structurally because the
multiset of arcsx =

∑
b∈A′ xb is connected, Eulerian andcost(x) > 0. Observe here that the

supportAx of x is maximal sinceAx = A′. Thus the detected pathological cycle has a maximal
support.

3. LetA1,...,An be the strongly connected components ofA′, with n > 2. We consider then VASSs
S1,..., Sn obtained fromS by a reduction to the subsets of arcsA1,..., An respectively. ThenS
admits a pathological cycle if and only if one of then subsystemsS1,...,Sn admits a pathological
cycle. Consequently it is sufficient to apply recursively the algorithm to each of these systems.

This algorithm yields a polynomial time procedure that checks whether the given VASSS terminates
structurally and returns a pathological circulationx if it does not. Note here that the length

∑
a∈A x[a]

of a corresponding cycle can be exponential in the size ofS because the coefficients ofx are encoded in
binary.

We have observed that the support ofx is actually maximal. In practice, we can use this procedure
iteratively to make sure that the support ofx is minimal, that is, there exists no pathological circulation
y with Ay ( Ax. However, searching for a pathological circulation with a minimal number of arcs in its
support is known to be NP-hard [2].

3. Representation of circulations

In order to help the understanding of a structural bug detected by a verification tool in the form of a
circulation, it is useful to represent this counter-example to the user as a pathological cycle. Then the
length of such a pathological cycle equals the sum of the circulation coefficients. Consequently it can be
exponential in the size of the VASS, as already observed in Example 2.5. Thus, listing the sequence of
arcs occurring along a pathological cycle is prohibitive. For that reason, we need to design acompact
representationof pathological cycles.

3.1. A format to describe pathological cycles

It is clear that any pathological cycleγ can be decomposed iteratively into a multisetC of circuits with
cost(C) = cost(γ). Then we can select withinC a set ofp circuits (wherep stands for the dimension of
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vectors) and compute a multisetC′ built over thesep circuits such thatcost(C′) = m · cost(γ) for some
m ∈ N \ {0}. This fact relies on a convexity argument known as Caratheodory’s theorem, as discussed
in the introduction. However, the set of arcs occurring in the selectedp circuits in this way need not to
be connected, that is,C′ does not represent a pathological cycle. A natural idea is touse an additional
connecting cycle (called thecalyx) on which the selected circuits (calledpetals) would hang. This leads
us to the notion of flower.

Definition 3.1. A flower is a structureF that consists of

• a sequence ofk connection statesq0, . . . , qk−1 with k > 1,

• a sequence ofk circuitsσ0, . . . , σk−1, where each circuitσi starts fromqi,

• a connecting cycleκ0 . . . κk−1, whereκi is a simple path fromqi to qi+1 (mod k) that is empty if
qi = qi+1 (mod k),

• together with a sequencen0, . . . , nk of natural numbers, withni > 1.

Such a structure represents the cycleγF = σn0

0 .κ0.σ
n1

1 . . . σ
nk−1

k−1 κk−1.(κ0 . . . κk−1)
nk−1 starting from

q0. Its cost is equal tocost(F) = cost(γF ) =
∑k−1

i=0 nk · cost(κi) + ni · cost(σi).

The component circuitsσi of a flower are called thepetalswhile the connecting cycleκ0 . . . κk−1 is
called thecalyx. Each petalσi is iteratedni times while the calyx occursnk times inγF . We say that
the calyx ofF is iterated if nk > 2. A flowerF is said to be pathological ifcost(F) > ~0. Continuing
Example 1.1, the cycleγ = l51.a2.l

3
2.a3.a1 corresponds to a flower with two petals that are iterated 3 and

5 times respectively. Note that each flower contains at leastone petal so that the represented cycleγF
cannot be empty. We require thatκi is empty ifqi = qi+1 (mod k) because the calyx is essentially meant
to connect petals. In particular, a flower with a single petalhas an empty calyx: It is simply an iterated
circuit. Note here that a cycle can describe several distinct flowers because the order of petals hanging
on the same state is meaningless and the calyx can be regardedas a petal itself, if it is an iterated circuit.
These two situations will appear in examples below. Yet, thenext example shows that we cannot require
in general that the calyx be a circuit.

q1 q2 q3

(

0

−1

) (

−1

0

)

(

0

0

)(

0

0

)

(

3

−1

) (

−1

3

)

Figure 2. The calyx of a flower cannot be a circuit

Example 3.2. Consider the 2-dimensional VASS with 3 states from Fig. 2. Each non-empty pathological
cycle in this VASS makes use of each arc. Consider a pathological flower for this VASS. The two self-
loop arcs onq1 andq3 must occur as petals. Consequently the calyx goes through these two states and it
cannot be a simple cycle.
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3.2. Representation of circulations with flowers

In this paper we show that each non-empty pathological circulation can be represented by a flower with
at mostp petals.

Example 3.3. Let p = 4. Consider the VASS with a single state and four self-loop arcs labeled respec-
tively by the four following 4-dimensional vectors:

t1 =




1

−1

0

0




; t2 =




0

1

−1

0




; t3 =




0

0

1

−1




; t4 =




−1

0

0

1




The cycleγ = t1.t2.t3.t4 satisfiescost(γ) = ~0 and corresponds to a flower with four petals:t1, t2, t3, t4
and an empty calyx. It is clear that any pathological cycle involves all arcs of this VASS because of their
pairwise dependencies. Therefore any pathological flower needs precisely these four petals, too, because
no self-loop arc can occur within a calyx and petals are required to be circuits.

This example easily adapts to any dimensionp. Thus we cannot expect in general to have less than
p petals in a representative flower of a pathological circulation. Theorem 3.4 below asserts that it is
sufficient to consider flowers with at mostp petals to represent any non-empty pathological circulation.

Theorem 3.4. Let H be a non-empty circulation of a VASSS. We can compute in polynomial time a
flowerF with at mostp petals such thatcost(F) = m · cost(H) for somem ∈ N \ {0}.

We present in the following sections an algorithm that builds such a flowerF from a given circulationH
in time polynomial in the size of the inputs, that is, the sizeof the VASSS plus the size of the circulation
H. With no surprise, the flowerF is built only from the arcs appearing in the circulationH (because we
can assume that all arcs ofS occur inH).

Observe that the resulting flowerF is pathological if and only if the given circulationH is patholog-
ical. Thus Theorem 3.4 yields a pathological flower built from any pathological circulation. Since the
latter is meant to be produced by our variant of Kosaraju and Sullivan’s algorithm, its size is polynomial
in the size of the VASSS —although the length of any corresponding cycle may be exponential in the
size ofS. Thus, in practice, we obtain a pathological flower in time polynomial in the size ofS.

Observe also that we have similarlycost(F) = ~0 if and only if cost(H) = ~0, andcost(F)  ~0 if
and only ifcost(H)  ~0. Consequently Theorem 3.4 applies to the representation ofzero-cycles and to
counter-examples of structural boundedness, too.

The factorm in the statement of Theorem 3.4 is not a drawback of the representation of circulations
by flowers because the actual length of the resulting pathological cycle is not relevant. Moreover this
factor is necessary to ensure that the flower has at mostp petals, as the next example shows.

Example 3.5. Consider the VASS with a single state and four self-loop arcslabeled respectively by the
four following 2-dimensional vectors:

t1 =

(
−1

5

)
; t2 =

(
−1

10

)
; t3 =

(
1

−6

)
; t4 =

(
1

−8

)
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Let H = t1 + t2 + t3 + t4. We havecost(H) = (0, 1)⊤ so the circulationH is pathological. This
circulation can be regarded as a flower with four petals. It iseasy to see that one needs only two petals
to build an equivalent flower. For instanceH ′ = t2 + t4 satisfiescost(H ′) = 2 · cost(H). Observe here
that the support ofH ′ does not include all arcs fromH. Further, there exists no flowerF ′′ with at most
two petals such thatcost(F ′′) = cost(H).

The next example shows that Theorem 3.4 does not hold if we require that the iteration of the calyx
is forbidden.

q1 q2

(

−1

+1

)

a1

(

0

0

)

a2

(

−2

+3

)

l2

(

+4

−5

)

l1

Figure 3. Iterating the calyx is necessary to a flower with at mostp petals

Example 3.6. Consider the 2-dimensional VASS with two statesq1 andq2 depicted in Figure 3 and the
non-empty circulationH0 = l1 + l2 + 2 · (a1 + a2). We havecost(H0) = ~0. LetH be any non-empty
circulation withcost(H) = ~0. We haveH = x · l1 + y · l2+ z · (a1 +a2) becauseH is Eulerian. Clearly
x 6= 0. Furthermore,y 6= 0 because the linear system of two equalities4×x−z = 0 and−5×x+z = 0
requires thatx = z = 0. It follows thatz > 1 becauseH is connected. Similarly, we havez 6= 1 because
the linear system of two equalities4× x− 2× y − 1 = 0 and−5× x+ 3× y + 1 = 0 has no integral
solution. Consequentlyz > 2. It follows that any flowerF with cost(F) = ~0 with at most two petals
must admitl1 andl2 as petals (since they cannot occur in the calyx) anda1.a2 as calyx; moreover this
calyx must be iterated at least twice.

3.3. An intermediate format: Wings

In this paper, we shall use an alternative structure which represents pathological cycles in the form of a
multiset of particular cycles called wings. Roughly speaking, a wing with valuationk is a cycle which
consists ofk iterations of a circuit plus a path back and forth from one state of the circuit to some fixed
starting state. This shared starting state will ensure thata multiset of wings remains connected.

Definition 3.7. Let q, q′ ∈ Q be two states ofS. Let γ0 be a circuit ofS starting fromq′. Let γ1 be a
simple path fromq to q′ andγ2 be a simple path fromq′ to q. Let k ∈ N \ {0}. Let ω = γ1.γ

k
0 .γ2 be

the cycle which starts fromq and which consists ofγ1, followed byk iterations of the cycleγ0, followed
by γ2. Thenω is called awing of S with valuationk. A wing is said to bereducedif q′ differs from the
domain of each arc ofγ1 andq differs from the domain of each arc ofγ2.

A wing is often represented by a multiset of arcsW = D+k ·C whereC is the set of arcs occurring
in the cycleγ0 while D is the multiset of arcs occurring inγ1 andγ2. Then the multisetW is connected
and Eulerian. Note that the connecting cycleγ1.γ2 from q need not be simple (nor non-empty). However,
each arc occursat most twicein γ1.γ2. In this paper, we will only consider reduced wings because they
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are easier to use in order to build flowers, while the algorithm actually yields reduced wings. The point
is thatγ1 andγ2 are used to connect the iterated circuitγ0 to the fixed stateq, and they can be chosen as
shortest paths fromq to q′ and fromq′ to q respectively.

Example 3.8. We continue Example 1.1 withp = 2. We have observed that the cost of the cycleγ is
cost(γ) = (1, 4)⊤. Consider the two wingsW1 = a1.l

10
1 .a2.a3 with valuation10 andW2 = a1.a2.l

6
2.a3

with valuation6. Noteworthy2 · cost(γ) = cost(W1) + cost(W2). This equality illustrates precisely
how wings can represent a cycle up to a scalar multiplicationfactor of its cost.

In Section 4 we establish the following intermediate resultwhich asserts that there exists such a
representation by wings for any pathological circulation.

Theorem 3.9. Let Ĥ be a non-empty circulation of a VASSS andq̂ ∈ Q
Ĥ

. We can compute in polyno-
mial time a non-empty multisetW of wings built over at mostp distinct reduced wings starting from̂q
and such thatcost(W) = m · cost(Ĥ) for somem ∈ N \ {0}.

The next section is devoted to the proof of Theorem 3.9. We shall present an algorithm that builds a
multiset of wings from a circulation in time polynomial in the size of the inputs, that is, the size of the
VASS S plus the size of the circulation̂H. Similarly to Theorem 3.4, the given circulation is meant to
be produced by our variant of Kosaraju and Sullivan’s algorithm: Its size is polynomial in the size of the
VASSS. In this case, we compute a pathological multiset of wings intime polynomial in the size ofS.
The construction of wings from a circulation is largelynon-deterministic: It relies on a series of arbitrary
choices at several stages, without any backtrack. These choices can be solved by, say, an arbitrarily fixed
total order over the set of arcs inS. This yields implicitly also a total order over the states ofS. Then the
constructions of wings and flowers described in the two next sections become deterministic.

As opposed to flowers, wings have many advantages in terms of technical simplicity. Adding a
new wing starting from̂q to a set of wings starting from̂q needs no effort, while adding a petal to a
flower requires to find a new calyx, as soon as the new petal doesnot meet the original calyx. Further-
more, removing a wing from a multiset of wings (because it appears to be redundant by application of
Carathéodory’s theorem) needs also no effort, while removing a petal from a flower can affect the calyx
and create a new petal, because the calyx must consist of simple paths, only. Thus, multisets of wings
are easier to build and to reduce than flowers.

Still, the format of flowers was suggested in [2] as a simpler structure. The point is that flowers with
p petals are conceptually simpler thanp iterated wings because each wingγ1.γ

k
0 .γ2 with valuationk that

is iteratedx times corresponds to a cyclic componentγ0 that is iteratedx × k times and a connecting
cycleγ1.γ2 that is iteratedx times. Intuitively, the calyx in a flower replaces all connecting cycles within
a multiset of wings. For that reason, we consider flowers to bea better format.

4. Construction of wings from a circulation

In this section, we fix a VASSS = (Q,A), a non-empty circulation̂H ∈ NA and a statêq ∈ Q
Ĥ

. We
prove Theorem 3.9 in two steps. We show first how to compute in polynomial time a non-empty multiset
W of reduced wings starting from̂q such thatcost(W) = m · cost(Ĥ) for somem ∈ N \ {0}. Next we
explain in Subsection 4.3 how to reduce the number of distinct wings inW to less thanp.
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The construction ofW proceeds inductively over the number||Ĥ|| of distinct arcs inĤ. At each step,
a wingW = D + k · C 6 Ĥ with valuationk is added toW and removed fromĤ until Ĥ is empty.
This wing should satisfy the three following properties:

1. Some arc in the cyclic componentC has multiplicityk within Ĥ; in this way, at least one arc is
removed from the support of̂H at each step:||Ĥ −W || < ||Ĥ ||.

2. The Eulerian multiset of remaining arcŝH −W is connected; this ensures that we can proceed
recursively.

3. The fixed statêq belongs to the new circulation̂H − W , so that all wings share this common
starting state —except of course if̂H −W is already empty.

The first idea for the search of such a wingW within Ĥ is that it is sufficient to find a circuitC satisfying
these conditions. This leads us to the following central notion of anadequatecircuit.

Definition 4.1. Let H ∈ NA be a non-empty circulation andq0 ∈ QH . A circuit C with multiplicity
k > 1 in H is adequatefor H andq0 if it satisfies the two next conditions:

• the multiset of arcsH − k · C is connected;

• if H − k · C is not empty thenQH−k·C containsq0.

Example 4.2. Continuing Example 1.1, we consider the circulationH = a1 + a2 + a3 + 5 · l1 + 3 · l2
for the VASS depicted in Figure 1. Then the two circuitsl1 and l2 are adequate forH andq0 whereas
the circuita1.a2.a3 is not for two reasons: First, the multiset of arcsH − a1 − a2 − a3 is not connected;
second, it does not containsq0.

Note that||H − k · C|| < ||H|| for any circuitC with multiplicity k in H. The construction ofW
relies on two independent algorithms presented in the two next subsections. The first algorithm shows
how to find an adequate circuit for any non-empty circulationH ∈ NA and any stateq0 ∈ QH . The
second one is much easier. It explains how to build the expected multisetW of wings with the help of
adequate circuits as inputs.

4.1. Finding an adequate circuit in a circulation for a fixed state

The search for a circuitC adequate forH andq0 proceeds non-deterministically and inductively over
the number||Ĥ || of arcs inAH . Each step distinguishes two main cases. The simpler case assumes that
all circuits withinH containq0. Then each circuit is adequate forH andq0. The reason is that any
connected component of the Eulerian multisetH − k · C contains a circuit, and hence containsq0.

The more interesting case considers that there exists a circuit C 6 H that does not containq0. Let k
be the multiplicity ofC within H. Thenq0 ∈ QH−k·C becauseq0 does not occur inC. HenceH−k ·C is
not empty. Then the circuitC is adequate ifH−k ·C is connected. In this case, the search is terminated.
Otherwise we consider a connected componentH ′ of H − k · C that does not containq0, as illustrated
in Fig. 4.1. We will show how to find inH ′ a circuitC ′, with multiplicity k′ in H ′, such that

1. at least one arca ∈ AC′ \ AC satisfiesH ′[a] = k′. ThenH ′[a] = H[a] and k′ is also the
multiplicity of a in H; hence||H − k′ · C ′|| < ||H||.
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2. each connected component ofH ′− k′ ·C ′ contains a state fromC. ThenH − k′ ·C ′ is connected;
moreoverq0 ∈ QH−k′·C′ becauseq0 does not occur inH ′.

It follows thatC ′ is adequate forH andq0.
The search for an appropriate circuitC ′ within H ′ can be regarded as a generalisation of the search

for an adequate circuitC within H where the connectivity ofH − k · C is replaced by the connectivity
of H ′ − k′ · C ′ if one incorporates the circuitC. Actually, for simplicity’s sake, we will consider at this
point a simple pathσ made of all but one arcs fromC. Intuitively, σ will play the role ofC. However
we shall also consider a special case whereσ is the empty path in order to deal with adequate circuits as
a special case.

•q0
H H ′

C

H

σ

• q0
C

C ′

H ′

σ
′

Figure 4. Searching for an adequate circuit Figure 5. Induction step

Definition 4.3. Let H ∈ NA be a non-empty circulation,q0 ∈ QH , andσ ∈ A⋆ be a simple path.
A circuit C with multiplicity k > 1 in H is appropriate for H and(q0, σ) if it satisfies the two next
conditions:

1. there exists an arca ∈ AC \Aσ such thatH[a] = k;

2. each connected component ofH − k · C contains a state fromQσ ∪ {q0}.

Observe that a circuitC is appropriate forH and(q0, ǫ) whereǫ denotes the empty path (Def. 4.3)
if, and only if, it is adequate forH andq0 (Def. 4.1). For that reason, the search for an adequate circuit
will simply ask for an appropriate circuit w.r.t. the empty path ǫ in Algorithm 2 below. In this way, the
role of stateq0 for adequate circuits is extended to a pathσ.

We present now in Algorithm 1 a way to compute circuits that are appropriate forH and(q0, σ),
provided thatσ is not a circuit,q0 ∈ QH , andq0 ∈ Qσ if σ is not empty.

Proposition 4.4. Let H ∈ NA be a circulation. Letq0 ∈ QH andσ ∈ A⋆ be a simple path such that
q0 ∈ Qσ if σ is not empty. Provided thatσ is not a circuit, Algorithm 1 returns a circuit that is appropriate
for H and(q0, σ).

Assume thatH ∈ NA is a non-empty circulation andσ = a1...an is a simple path consisting of arcs
from A such thatσ is not a circuit. Letq0 ∈ QH be a state ofH such thatq0 ∈ Qσ if σ is non-empty.
Searching for an appropriate circuitC for H and(q0, σ) is slightly more involved than searching for an
adequate one. However, Algorithm 1 proceeds similarly to the above discussion and distinguishes two
main cases.
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Algorithm 1 AppropriateCircuit(H, q0 , σ)

Require: H ∈ NA is a non-empty circulation.
Require: σ is a (possibly empty) simple path consisting of arcs fromA and such thatσ is not a circuit.
Require: q0 ∈ QH andq0 ∈ Qσ if the pathσ is non-empty.

if all circuitsC 6 H satisfyQC ∩ (Qσ ∪ {q0}) 6= ∅ then
Chooseb ∈ AH \ Aσ arbitrarily
β ← b # Initially β is a path of length 1
while β contains no circuitdo

if there exists an arcb′ ∈ AH \ Aσ with dom(b′) = cod(b) then
Choose someb′ ∈ AH \Aσ with dom(b′) = cod(b)

else
Find the arcb′ ∈ AH ∩Aσ such thatdom(b′) = cod(b)

end if
Add the arcb′ to the end of the pathβ
b← b′ # β remains the last arc ofβ

end while
return a circuitC within β

else
Choose a circuitC 6 H such thatQC ∩ (Qσ ∪ {q0}) = ∅
Let k be the multiplicity ofC in H
if each connected component ofH − k · C contains a state fromQσ ∪ {q0} then

return C # In particular ifH = k · C.
else

Choose a connected componentH ′ of H − k · C with QH′ ∩ (Qσ ∪ {q0}) = ∅.
Choose a stateq′0 from QH′ ∩QC and an arca ∈ AC with H[a] = k.
Let σ′ be the path made of all arcs fromAC \ {a}
return AppropriateCircuit(H ′, q′0, σ

′) # Then||H ′|| < ||H||
end if

end if

We need first to determine whether all circuits inH contain a state fromQσ ∪ {q0}. To do so, one
considers the subsetA′ ⊆ A consisting of all arcs fromAH whose source and target do not belong to
Qσ ∪ {q0}. LetA′

1,...,A
′
n be the strongly connected components ofA′. Then there exists a circuitC in

H with QC ∩(Qσ∪{q0}) = ∅ if, and only if,A′ contains a self-loop arc or one of the strongly connected
componentsA′

i has two states. Depending on whether this condition is satisfied, we investigate one of
the following two cases:

1. We assume first that all circuits inH contain a state fromQσ ∪ {q0}. Algorithm 1 builds a circuit
C = a0a1...an−1 in H using preferably arcs that do not appear inσ. Sinceσ is not a circuit andH
is a non-empty circulation, we can choose first an arbitrary arc b ∈ AH \Aσ and consider the path
β = b. This path is extended iteratively by adding arcs fromAH to the end ofβ until β contains
a circuitC. At each iteration, there are potential candidates to completeβ becauseH is Eulerian.
However, we require that arcs fromAH \ Aσ are preferred to the others in this extension process.
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Clearly this loop terminates after at most|QH | iterations. At this point, we claim that the circuit
C within β is appropriate forH and(q0, σ).

Proof. Let k > 1 be the multiplicity ofC in H. SinceH is Eulerian,H−k ·C is Eulerian. LetH ′

be a connected component ofH−k ·C. SinceH−k ·C is Eulerian,H ′ is Eulerian. Therefore there
is a circuit inH ′ and henceH ′ contains a state fromQσ ∪ {q0}. Thus, all connected components
of H − k · C contain a state fromQσ ∪ {q0}.

Since the simple pathσ is not closed, by hypothesis, the circuitC = a0...an−1 within β cannot
be made of arcs fromσ only. In other words,C contains at least one arc that does not belong
to Aσ. Assume that there is an arcai ∈ Aσ ∩ AC . Due to the priority of arcs adopted, there
exists no arcb ∈ AH \ Aσ such thatdom(b) = dom(ai). Sinceσ is a simple path, the arc
ai is the single arc fromAH such thatdom(ai) = cod(ai−1 (mod n)). Consequently, we have
H[ai−1 (mod n)] 6 H[ai] becauseH is Eulerian. SinceC contains at least one arc that does not
belong toAσ, there exists an arca ∈ AC \Aσ such thatH[a] 6 H[ai]. It follows that there exists
a ∈ AC \Aσ such thatH[a] is equal to the multiplicityC in H.

2. We assume now that there exists a circuitC in H with QC ∩ (Qσ ∪ {q0}) = ∅. Let k > 1 be the
multiplicity of C in H. If each connected component ofH − k ·C contains at least one state from
Qσ ∪ {q0} thenC is appropriate forH and(q0, σ). Therefore we assume now thatH − k · C is
non-empty and admits some connected componentH ′ of H − k · C that contains no state from
Qσ ∪ {q0}. The situation is illustrated in Fig. 4.1. Leta ∈ AC be such thatH[a] = k. Then
H ′[a] = 0 and hence||H ′|| < ||H||. MoreoverQH′ ∩ QC 6= ∅, otherwise there would be no path
fromQH′ toQC in the circulationH. We fix some stateq′0 ∈ QH′ ∩QC . We let alsoσ′ denote the
simple path made of all arcs fromAC \ {a}. Thenσ′ contains all arcs fromAC ∩AH′ . Moreover
σ′ is not a circuit andq′0 ∈ Qσ′ as soon asσ′ is not empty. At this point, we claim that any circuit
C ′ appropriate forH ′ and(q′0, σ

′) is also appropriate forH and(q0, σ).

Proof. Let k′ > 1 be the multiplicity ofC ′ in H ′. Then,

• There exists an arca′ ∈ AC′ \Aσ′ such thatH ′[a′] = k′.

• Each connected component ofH ′ − k′ · C ′ contains a state fromQσ′ ∪ {q′0}.

Sinceσ′ contains all arcs fromC that occur inH ′, we havea′ /∈ AC . ThereforeH[a′] = (H − k ·
C)[a′] = H ′[a′]. It follows thatk′ is also the multiplicity ofC ′ in H. SinceH ′ contains no state
from Qσ ∪ {q0}, C ′ contains no state fromQσ ∪ {q0} either. Further, we havea′ ∈ AC′ \ Aσ.
Sinceq0 ∈ H andq0 /∈ H ′, q0 appears inH − k′ ·C ′. To conclude the proof, we show simply that
the Eulerian multiset of arcsH − k′ · C ′ is connected.

SinceH − k · C > k′ · C ′, we haveH − k′ · C ′ > k · C > C. Thus all states ofQC are strongly
connected to each other inH − k′ · C ′. Let q′′ ∈ QH−k′·C′ . It remains to show that there exists a
path fromq′′ to a state fromC made of arcs fromH − k′ · C ′. The claim is trivial ifq′′ ∈ QC . If
q′′ /∈ QC thenq′′ belongs to one of the connected components ofH − k · C. We distinguish two
cases:

• q′′ ∈ QH′ . Sinceq′′ ∈ QH−k′·C′ , there exists some arca′′ ∈ H − k′ · C ′ such thatq′′ =
dom(a′′) or q′′ = cod(a′′). Sinceq′′ /∈ QC , we havea′′ /∈ C and henceH[a′′] = H ′[a′′].
ThenH ′[a′′]−k′·C ′[a′′] = H[a′′]−k′·C ′[a′′] > 1. It follows thatq′′ ∈ QH′−k′·C′ . Since each
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connected component ofQH′−k′·C′ contains a state fromQσ′ ∪ {q′0} andQσ′ ∪ {q′0} ⊆ QC ,
there exists a path fromq′′ toC in H ′ − k′ · C ′ and hence inH − k′ · C ′.

• q′′ ∈ QH′′ whereH ′′ is a connected component ofH − k · C different fromH ′. Then
QH′′ ∩ QC 6= ∅ otherwise there would be no path from the set of statesQH′′ to the set of
statesQC in H. Therefore there exists a path fromq′′ toC in H ′′ and hence inH − k′ · C ′.

ThusH − k′ · C ′ is connected and the circuitC ′ is appropriate forH and(q0, σ).

4.2. Building a multiset of wings from a pathological circulation

The construction of a representative multisetW of wings from the multisetĤ of arcs is described in
Algorithm 2. InitiallyW is empty and we putH = Ĥ. Hencecost(W) + cost(H) = m · cost(Ĥ) with
m = 1. This equality will act as a loop invariant of the main loop. First, a circuitC adequate forĤ
andq̂ is found with the help of Algorithm 1. Recall here that a circuit C is appropriate forH and(q̂, ǫ)
(whereǫ denotes the empty path) if, and only if, it is adequate forH andq̂. Let k be the multiplicity of
C in H. Then the Eulerian multisetH − k ·C is connected and̂q ∈ QH−k·C provided thatH − k ·C is
not empty. Moreover||H − k · C|| < ||H||.

We build fromC a wingW starting fromq̂ with C as its cyclic component. If̂q appears inC then
W = k · C is a wing starting from̂q. Assume that̂q /∈ QC . Thenq̂ ∈ QH−k·C . SinceH is connected,
there is a stateq ∈ QC ∩QH−k·C . SinceH − k · C is a circulation, there are a simple pathγ1 from q̂ to
q and a simple pathγ2 from q to q̂ made of arcs fromAH−k·C . We letD denote the multiset of arcs that
corresponds to the cycleγ1.γ2. Then the multisetW = D + k · C represents a wing which starts from
q̂. MoreoverD[a] 6 2 for eacha ∈ A becauseγ1 andγ2 are simple paths, henceW 6 3 ·H, because
k · C 6 H. Furthermore, each arca ∈ AC with multiplicity k in H does not occur inγ1.γ2, since it
does not occur inH − k · C. We can require thatγ1 andγ2 are shortest paths from̂q to q and fromq to
q̂ respectively. ThusW is areducedwing. We distinguish then three cases:

1. If W = H then the wingW is added toW and removed fromH leading to the empty multiset
H ′ = ~0.

2. If W 6 H, H −W is connected and̂q ∈ QH−W then the wingW is added toW and removed
fromH leading to the new circulationH ′ = H−W such that̂q ∈ QH′ . Sincek is the multiplicity
of C in H, we get||H ′|| < ||H||.

3. Otherwise the multiset of wingsW is multiplied by3. Thencost(W)+cost(3 ·H) = m ·cost(Ĥ)
for somem ∈ N\{0}. We consider the new wingW ′ = D+3k·C. We haveW ′ 6 3·H. We claim
that3 ·H −W ′ is a circulation that containŝq if it is not empty; moreover||3 ·H −W ′|| < ||H||.

Proof. Let a be an arc fromC such thatH[a] = k. Then3 · H[a] − D[a] = 3k becausea
does not occur inγ1.γ2. On the other hand, for each arca′ from C with H[a′] > k + 1, we have
3·H[a′]−D[a′] > 3k+1 becauseD[a′] 6 2. It follows that3k is the multiplicity ofC in 3·H−D.
The wingW ′ is added toW and removed from3 ·H leading to the new Eulerian multiset of arcs
H ′ = 3 · H −W ′. For eacha ∈ A, we have3(H − k · C)[a] > H ′[a] > 3(H − k · C)[a] − 2,
becauseD[a] 6 2. HenceAH′ = AH−k·C . Consequently,H ′ is connected,||H ′|| < ||H||, and
q̂ ∈ QH′ if H ′ 6= ~0.
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Algorithm 2 Computing a multiset of wings

Require: A non-empty circulationĤ and a statêq ∈ Q
Ĥ

W ← ~0 # Initially W is the empty multiset of wings
H ← Ĥ # Initially cost(W) + cost(H) = m · cost(Ĥ) with m = 1
while H 6= ~0 do
C ← AppropriateCircuit(H, q̂, ǫ) #C is adequate forH andq̂.
Let k be the multiplicity ofC in H # k · C 6 H andH − k · C is connected
if q̂ ∈ QC then

D ← ~0 #D ∈ NA is the empty multiset of arcs
W ← k · C # The multisetW represents a wing such thatW 6 H

else
Let q be some state inQC ∩QH−k·C .
Let γ1 be a shortest path from̂q to q made of arcs fromAH−k·C . # γ1 is a simple path
Let γ2 be a shortest path fromq to q̂ made of arcs fromAH−k·C . # γ2 is a simple path
LetD be the multiset of arcs that corresponds to the cycleγ1.γ2. # ThenD 6 2 ·H
W ← D + k · C # The multisetW represents a reduced wing such thatW 6 3 ·H

end if
if (H = W ) or (W 6 H andH −W is connected and̂q ∈ QH−W ) then

Add the wingW toW.
H ← H −W # cost(W) + cost(H) = m · cost(Ĥ) for somem > 1

else
W ′ ← D + 3k · C #W ′ is a reduced wing; moreover we haveAH−k·C = A3·H−W ′

W ← 3 · W # cost(W) + cost(3 ·H) = m · cost(Ĥ) for somem > 1
Add the wingW ′ toW.
H ← 3 ·H −W ′ # cost(W) + cost(H) = m · cost(Ĥ) for somem > 1

end if
end while
return W

Thus, in all cases we get thatH ′ is Eulerian and connected. Moreoverq̂ ∈ QH′ provided thatH ′ is
not empty and hence the next iteration of the algorithm can proceed analogously. Furthermore we have
||H ′|| < ||H|| henceforth Alg. 2 terminates after at most|A| iterations.

Example 4.5. We continue Examples 1.1 and 4.2 to illustrate an execution of Alg. 2 with the VASS
depicted in Figure 1, the circulation̂H = a1+a2+a3+5 · l1+3 · l2, and the base statêq = q0. First, the
adequate circuitl1 with multiplicity 5 can be chosen which leads to the wingW1 = a1+a2+a3+5 · l1.
SinceĤ − W1 does not contain̂q, we putW ′

1 = a1 + a2 + a3 + 15 · l1 and getW = {W ′
1} and

H = 3 · Ĥ −W ′
1 = 2 · a1 + 2 · a2 + 2 · a3 + 9 · l2 at the end of the first iteration.

In the second iteration,l2 is the unique adequate circuit forH and q̂. Therefore we putW2 =
a1 + a2 + a3 + 9 · l2 and getW = {W ′

1,W2} andH ′ = H −W2 = a1 + a2 + a3 because this Eulerian
multiset of arcs is connected and containsq̂. The third and last iteration selects the adequate circuit
W3 = a1 + a2 + a3 which yields the multiset of wingsW = {W ′

1,W2,W3} depicted in Fig. 6. Observe
here thatcost(W) = (3, 12)⊤ = 3 · cost(Ĥ).
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Figure 6. Multiset of wings computed in Example 4.5

It is clear that the property thatcost(W) + cost(H) = m · cost(Ĥ) for somem ∈ N \ {0} is a loop
invariant of Algorithm 2. Consequently,

Theorem 4.6. Let Ĥ be a non-empty circulation of a VASSS and q̂ ∈ Q
Ĥ

. Algorithm 2 returns in
polynomial time a non-empty multisetW of reduced wings starting from̂q such thatcost(W) = m ·
cost(Ĥ) for somem ∈ N \ {0}.

Clearly the multisetW built by Algorithm 2 is made of at most|A| wings. Moreover the valuation
of each wing inW is at most3|A| ×maxa∈A Ĥ[a].

4.3. An upper bound for the number of distinct wings

Since Algorithm 2 terminates in less than|A| iterations, it provides us with a multisetW of wings
starting from the arbitrarily fixed statêq with at most|A| distinct wings. To conclude the proof of
Theorem 3.9, we show that we can make sure that the representative multisetW contains at mostp
distinct wings. This results essentially from Carathéodory’s theorem [22, Cor. 7.7i] which states that for
each setX ⊆ Qp of p-dimensional rational vectors, any rational vectorv ∈ Qp that lies in Cone(X) =
{λ1 · x1 + ... + λn · xn | n > 1;x1, ..., xn ∈ X;λ1, ..., λn ∈ Q+} lies in Cone(X ′) for someX ′ ⊆ X
with |X ′| 6 p, i.e.v = λ1 · x1 + ...+ λn · xn with p > n > 1, x1, ..., xn ∈ X andλ1, ..., λn ∈ Q+. We
implement and adapt this property to integral vectors and natural numbers as follows:

Corollary 4.7. Let x1, ..., xn ∈ Zp ben integral vectors andλ1 · x1 + ... + λn · xn = z be a linear
combination withλ1, ..., λn ∈ N. If n > p, we can compute in polynomial timeλ′

1, ..., λ
′
n ∈ N and

m ∈ N \ {0} such thatλ′
1 · x1 + ...+ λ′

n · xn = m · z andλ′
i 6= 0 for at mostn− 1 values ofi ∈ [1..n].

Proof. We can assume that then vectorsxi are distinct and that all natural numbersλ1,..., λn are
positive. Sincen > p, then vectorsxi are linearly dependent: There are rational numbersµ1,...,µn not
all zero such that(∗)

∑n
i=1 µi · xi = ~0. These rational numbers can be computed in polynomial time by

solving the followingn linear programs

(Pj)

{ ∑n
i=1 µi · xi = ~0

µj > 1

for j ∈ [1..n]. We can assume thatµi ∈ Z for eachi ∈ [1..n] —because we can derive a non-zero
integral solution to(∗) from a rational one with the help of Euclid’s algorithm, again. Further, we have
µj > 1 for somej ∈ [1..n].

Recall thatλi > 1 for eachi ∈ [1..n]. Let k ∈ [1..n] be such that

µk

λk

= max
i∈[1..n]

µi

λi
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Thenµk > 0 becauseµj > 1 for somej ∈ [1..n]. Moreoverλi.µk − λk.µi > 0 for eachi ∈ [1..n].
Furthermore we have

∑n
i=1(λi.µk − λk.µi) · xi = µk · z. To conclude, we putλ′

i = λi.µk − λk.µi and
observe thatλ′

k = 0.
We can apply iteratively Cor. 4.7 to the cost of the multiset of wingsW = λ0 ·W0 + ... + λn ·Wn

produced by Alg. 2 in order to compute a multisetW ′ built over at mostp reduced wings starting from
q̂ and such thatcost(W ′) = m′ · cost(W) for somem′ ∈ N \ {0}. Sincecost(W) = m · cost(Ĥ) for
somem ∈ N \ {0}, we getcost(W ′) = m′′ · cost(Ĥ) for somem′′ ∈ N \ {0}, too. Since our algorithm
is polynomial, the size of the valuation of these wings and the size of the number of occurrences of these
wings are polynomial in the size of the inputsS andĤ.

Example 4.8. We continue Example 4.5 to illustrate how Alg. 2 and Corollary 4.7 lead to Theorem 3.9.
We have obtained that the multiset of wingsW = 1 ·W ′

1+1 ·W2+1 ·W3 satisfiescost(W) = (3, 12)⊤

becausecost(W ′
1) = (−18, 27)⊤, cost(W2) = (24,−12)⊤, andcost(W3) = (−3,−3)⊤. Using a linear

programming solver yields:4 · cost(W ′
1) + 5 · cost(W2) + 16 · cost(W3) = ~0. ConsequentlyW3 can

be removed fromW and we get another pathological multiset of wingsW ′ = 12 ·W ′
1 + 11 ·W2 with

cost(W ′) = 16 · cost(W).

This example concludes the illustration of the construction of wings from circulations. Note here that the
simpler multiset of wingsW ′′ = 1 ·W ′

1 +2 ·W2 is also pathological. However, since multisets of wings
are only an intermediate format, it is no use in practice to reduce their iteration factors at this point.

5. Construction of a flower from a multiset of wings

In this section, we fix a non-empty circulation̂H and present a proof of Theorem 3.4. We observe first
that it is possible to build a flower directly from̂H as follows: First, one builds a cycle that corresponds
to Ĥ; next, one extracts petals from it by detecting iterated states along the cycle; finally, one can reduce
the number of petals to less thanp, as we will see below. However this approach requires exponential
space since the length of the cycle is exponential in the sizeof the circulation (and may be exponential in
the size of the VASSS as shown by Example 2.5). For that reason, we adopt another strategy that relies
on the representation by wings.

First, we apply Theorem 3.9 to get a non-empty multisetW of reduced wings starting from a fixed
stateq̂ such thatcost(W) = m · cost(Ĥ) for somem ∈ N \ {0} andW is built over at mostp distinct
wings. Then we build fromW a flowerF with at mostp petals and such thatcost(F) = m′ · cost(W)
for somem′ ∈ N \ {0}. To do so, we proceed in three steps. We observe first that, intuitively, an iterated
wing can be regarded as a flower. Formally we show that for eachwing ω = γ1.γ

k
0 .γ2 with valuation

k, and for allx > |Q| + 1, we can build a flowerFω,x starting from the starting state ofγ0 such that
cost(ωx) = cost(γ1) + cost(Fω,x)+ cost(γ2). Moreover,Fω,x does not iterate its calyx. Next we show
how to connect the flowers associated to each iterated wing ofW in order to get a single flowerF . At
this point, we assume that each wing is iterated at least|Q| + 1 times. For that reason,F has the same
cost asW, up to a multiplication factor. This flower has at most3 × |Q| × p petals. Finally, we show
how to use again Cor. 4.7 to reduce the number of petals in the representative flower to less thanp.

As opposed to the previous section, we do not give the construction as formal algorithms. We rather
provide sufficient details to explain and to justify the global procedure. We will also illustrate the con-
struction of flowers on our simple running example of Fig. 1.
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Example 5.1. We consider again the VASS from Fig. 1 and the two reduced wingsω1 = a1.l
15
1 .(a2.a3)

andω2 = (a1.a2).l
9
2.a3 with valuation15 and9 respectively. The cycleω1.ω

2
2 is pathological since

cost(ω1.ω
2
2) = (30, 3)⊤. For each natural numberx > 2, we havecost(ωx

2 ) = cost(a1.a2)+cost(F2,x)+
cost(a3) whereF2,x denotes the flower with an empty calyx and two petals:l2 that is iterated9×x times,
anda3.a1.a2 that is iteratedx− 1 times.

The transformation of an iterated wing(γ1.γk0 .γ2)
x into a flower is not always as easy as in the above

example, because the connecting cycleγ1.γ2 needs not to be simple in general. Consequently, we have
to extract petals from it.

5.1. From an iterated reduced wing to a flower

Consider a reduced wingω = γ1.γ
k
0 .γ2. The special case whereω consists only in its cyclic component

is trivial. Sinceω is reduced, we can assume that bothγ1 andγ2 are not empty and their starting state
differ. The following basic remark is illustrated by Fig. 7.

q0 q1 q2 qn−2 qn−1 qn γ0

γ1

γ2

σ0 σ1 σn−2 σn−1

σ′

0
σ′

1
σ′

n−1
σ′

n−2

β0

β′

0

Figure 7. Extracting intrinsic petals from the connecting cycle of a wing

Proposition 5.2. Let q andq′ ∈ Q be two distinct states andγ1 andγ2 be simple paths fromq to q′ and
from q′ to q respectively such thatq′ differs from the domain of each arc ofγ1 andq differs from the
domain of each arc ofγ2. We can compute in polynomial time

• a natural numbern > 1 smaller than the length ofγ1,

• n+ 1 statesq0, . . . , qn ∈ Q with q0 = q andqn = q′,

• n simple pathsσ0, . . . , σn−1 whereσi is a path fromqi to qi+1, and

• n simple pathsσ′
0, . . . , σ

′
n−1 whereσ′

i is a path fromqi+1 to qi,

such thatγ1 = σ0 . . . σn−1, γ2 = σ′
n−1 . . . σ

′
0, and for eachi ∈ [0..n − 1], the cycleσi.σ′

i is a circuit.

Proof. We proceed by induction over the length ofγ1. The claim is clear if|γ1| = 1 because the cycle
γ1.γ2 is simple. Induction step. We can assume that the cycleγ1.γ2 is not simple: We can find along the
pathγ1.γ2 some statẽq that occurs twice and such that no other state occurs twice between these two
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occurrences of̃q. Thenq̃ 6= q becauseγ1 is a simple path andq differs from the domain of each arc of
γ2. Similarly q̃ 6= q′. Sinceγ1 andγ2 are both simple paths, we have

• γ1 = γ′1.γ
′′
1 whereγ′1 leads fromq to q̃ andγ′′1 leads fromq̃ to q′;

• γ2 = γ′′2 .γ
′
2 whereγ′′2 leads fromq′ to q̃ andγ′1 leads fromq̃ to q.

Moreoverγ′′1 andγ′′2 are not empty sincẽq 6= q′. Since no state occurs twice between the two occurrences
of q̃, the cycleγ′′1 .γ

′′
2 starting fromq̃ is a circuit. It is now sufficient to apply the induction hypothesis to

γ′1 andγ′2 because|γ′1| 6 |γ1| − 1.

This decomposition allows us to represent an iterated wing as a flower.

Proposition 5.3. Letω = γ1.γ
k
0 .γ2 be a reduced wing starting fromq with valuationk > 1 andq′ be the

starting state of its cyclic componentγ0. Let x > |Q|. We can build in polynomial time a flowerFω,x

starting fromq′ with at most2× |Q| − 1 petals such that

• the calyx is not iterated,

• the first petal atq′ is iterated at least twice,

• x · cost(ω) = cost(γ1) + cost(Fω,x) + cost(γ2).

Proof. The particular case whereq = q′ is trivial becauseω is simply an iterated circuit starting from
q′. Consequently both connecting pathsγ1 andγ2 are empty: The flowerFω,x has an empty calyx and it
admitsγ0 as unique petal. We assume now thatq 6= q′. We apply first Prop. 5.2 and get a natural number
n with n ∈ [1..|Q|], n + 1 statesq0, . . . , qn ∈ Q with q0 = q andqn = q′, n simple pathsσ0, . . . , σn−1

whereσi is a path fromqi to qi+1, andn simple pathsσ′
0, . . . , σ

′
n−1 whereσ′

i is a path fromqi+1 to
qi such thatγ1 = σ0 . . . σn−1, γ2 = σ′

n−1 . . . σ
′
0, and for eachi, the cycleσi.σ′

i is a circuit. We have
x > |Q| > n. The situation is depicted in Fig. 7. We consider

• the circuitαi = σ′
i.σi that starts fromqi+1 for eachi ∈ [0, n − 1],

• the simple pathβi = σi+1 . . . σn−1 from qi+1 to qn for eachi ∈ [0, n − 2], and

• the simple pathβ′
i = σ′

n−1 . . . σ
′
i+1 from qn to qi+1 for eachi ∈ [0, n − 2].

Clearly the path

γ = γ
k(x−n+1)
0 .(γk0 .β

′
0.α

x−1
0 .β0).(γ

k
0 .β

′
1.α

x−2
1 .β1) . . . (γ

k
0 .β

′
n−2.α

x−n+1
n−2 .βn−2).α

(x−n)
n−1

is a cycle that starts fromq′. Moreover this cycle corresponds to a flowerFω,x with 2n − 1 petals and a
calyx equal toβ′

0.β0.β
′
1.β1 . . . β

′
n−2.βn−2 that is not iterated. This flower starts fromq′ with a first petal

γ0 that is iteratedk(x − n + 2) times. Observe thatσn−1 occurs in thex − n occurrences of the petal
αn−1 and in each of then − 1 pathsβi. Further, for each0 6 j 6 n− 2, the pathσj occursx− 1− j
times within the petalαj andj times within the calyx. The occurrences of the opposite paths σ′

j are
analogous. Thus we have

cost(Fω,x) = x · cost(γk0 ) + (x− 1) ·
n−1∑

i=0

(cost(σi) + cost(σ′
i)) = x · cost(γk0 ) + (x− 1) · cost(γ1.γ2).
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5.2. From a multiset of wings to a flower

We explain now how to connect the flowers associated to iterated wings with a common starting state in
order to build a single representative flower forW. Recall that these flowers come equipped with the two
connecting paths back and forth from the fixed starting stateq̂. Moreover they do not iterate their calyx.
For that reason, we can join easily these flowers into a singleone that does not iterate its calyx either.
However, some new petals may appear in this process, as shownby the next example.

Example 5.4. We continue Example 5.1 and consider the multiset of wingsω1 + 2 · ω2. Making use
of the representation of the iterated wingω2

2 by the flowerF2,2 we shall obtain a flower description of
ω1 + 2 · ω2 as a new flowerFω1+2·ω2

= a1.l
15
1 .(a2.a3.a1).a2.l

18
2 .(a3.a1.a2).a3 with four petals:l1, l2,

a2.a3.a1, anda3.a1.a2.

Proposition 5.5. Let W be a multiset of wings starting from̂q built over at mostp distinct reduced
wings. We can build in polynomial time a flowerF with at most3 × |Q| × p petals, no calyx iteration,
and such thatcost(F) = m · cost(W) for somem ∈ N \ {0}.

Proof. Let ω0, . . . , ωl−1 be thel reduced wings starting from̂q that occur at least once inW. We have
cost(W) =

∑l−1
i=0W[ωi] · cost(ωi). We can assume w.l.o.g. thatW[ωi] > |Q|+ 1 for each wingωi: If

this property does not hold, we can replaceW by (|Q| + 1) · W —due to the multiplication factorm in
the statement of Prop. 5.5. Each wingωi is made of a cyclic componentγi,0 starting fromqi and two
pathsγi,1 andγi,2 from q̂ to qi and fromqi to q̂ respectively. Thenωi = γi,1.γ

ki
i,0.γi,2 whereki > 1 is the

valuation ofωi.
By Prop. 5.3, the cycleγkiW [ωi]

i,0 .(γi,2.γi,1)
W [ωi]−1 is equivalent to a flowerFi with at most2×|Q|−1

petals, no calyx iteration, and such that the first petal atqi is iterated at least twice. In order to connect
thesel flowers, we consider thel pathsκi = γi,2.γi+1 (mod l),1 from qi to qi+1 (mod l) for eachi ∈
[0..l − 1]. Althoughγi,2 andγi+1 (mod l),1 are simple,κi need not to be simple. However, ifκi is not
simple, it can be decomposed into a simple path followed by a circuit that acts as a petal, followed by a
simple path, similarly to the proof of Prop. 5.2: It is sufficient to find alongκi some statẽq that occurs
twice and such that no other state occurs twice between thesetwo occurrences of̃q. Let γFi

denote the
cycle corresponding to the flowerFi. Then the cycleγ = γF0

.κ0.γF1
.κ1 . . . γFl−1

.κl−1 can be regarded
as a flowerFγ when all but one occurrences of first petal ofFi are connected to the beginning ofκi
and the last one is connected to the end ofκi−1 (mod l). This flower has at most(2 × |Q| + 1) × l

petals and no calyx iteration. Observe that
∑l−1

i=0 cost(κi) =
∑l−1

i=0 cost(γi,2.γi,1). Hencecost(Fγ) =∑l−1
i=0 cost(Fi) + cost(γi,2.γi,1) =

∑l−1
i=0W[ωi] · cost(ωi) = cost(W).

5.3. Reducing the number of petals in a flower

To conclude the proof of Theorem 3.4, we need to reduce the number of petals inF from 3× |Q| × p to
p. This is done by Cor. 5.8 below. Due to Carathéodory’s theorem, if there are more thanp + 1 petals
then one of them is redundant and can be removed, provided that we adapt the iteration numbers of the
calyx and of the remaining petals. However this removal of petals can lead to connection paths between
the remaining petals that are no longer simple paths. That iswhy some new petals can appear also along
this last step. This remark is formalized by the following observation and illustrated by Fig. 8.
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q0 q1 q2 q3 q4 qn−1

q̃

qn

κ0 κ1 κ2 κ3
κn−1

κ
′

1
κ
′

3

σ
′

Figure 8. Reducing the size of the calyx

Proposition 5.6. Let q0, . . . , qn ben + 1 states andκ0, . . . , κn−1 ben simple paths such thatκi leads
from qi to qi+1. Let γ = κ0 . . . κn−1 be the resulting path fromq0 to qn. If γ is not simple then we can
compute in polynomial time

• k + 1 statesq′0, . . . , q
′
k with k 6 n, q′0 = q0, andq′k = qn,

• k simple pathsκ′0, . . . , κ
′
k−1 such thatκ′i leads fromq′i to q′i+1, and

• k − 1 circuitsσ′
1, . . . , σ

′
k−1 which start fromqi

such thatγ = κ′0.σ
′
1.κ

′
1σ

′
2 . . . σ

′
n.κ

′
n.

Proof. We proceed by induction overn. The base case forn = 1 is trivial becauseκ0 is simple.
Induction step: We assume thatn > 2 andγ is not simple. We can find alongγ some statẽq that occurs
twice and such that no other state occurs twice between thesetwo occurrences of̃q. We assume that
these two occurrences ofq̃ take place inκj andκj′ with j < j′. The pathκj can be split into two simple
pathsκj,1 andκj,2 such thatκj,1 leads fromqj to q̃ andκj,2 leads fromq̃ to qj+1. Similarly, the path
κj′ can be split into two simple pathsκj′,1 andκj′,2 such thatκj′,1 leads fromqj′ to q̃ andκj′,2 leads
from q̃ to qj′+1. Then the cycleσ′ = κj,2.κj+1 . . . κj′−1.κj′,1 starting fromq̃ is non empty and simple.
Furthermore the pathγ1 = κ0 . . . κj−1.κj,1 from q0 to q̃ is made of at mostj + 1 simple paths, where
j + 1 6 j′ 6 n − 1. Similarly, the pathγ2 = κj′,2.κj′+1 . . . κn−1 from q̃ to qn is made of at most
n− j′ simple paths. Thus we can apply the induction hypothesis to both γ1 andγ2 and get the expected
decomposition ofγ with at mostj + 1 + n− j′ 6 n component simple pathsκ′i.

As already stressed by Example 3.6, the iteration of the calyx is necessary to get a flower with at most
p petals. Thus, with no surprise, removing petals requires finally to allow for the iteration of a calyx.

Proposition 5.7. LetF be a flower withk > p+1 petals. We can compute in polynomial time a flower
F ′ such thatcost(F ′) = m · cost(F) for somem ∈ N \ {0} and

• eitherF ′ has at mostk − 1 petals,

• orF ′ hask petals and the length of its calyx is strictly smaller than the length of the calyx ofF .

Proof. LetF be a flower consisting of

• a sequence ofk > 2 petalsσ0, . . . , σk−1, where each circuitσi starts fromqi,

• a calyxκ0 . . . κk−1, whereκi is a simple path fromqi to qi+1 (mod k),

• and a sequencen0, . . . , nk of natural numbers, withni > 1.
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We havecost(F) = nk ·cost(κ0 . . . κk−1)+
∑k−1

i=0 ni ·cost(σi). According to Cor. 4.7, we can compute
in polynomial time a sequencen′

0, . . . , n
′
k−1 of natural numbers such that

∑k−1
i=0 n′

i · cost(σi) = m ·
(cost(F) − nk · cost(κ0 . . . κk−1)) for somem ∈ N \ {0} andn′

i 6= 0 for at mostk − 1 values of
i ∈ [0..k − 1]. We consider the path

γ′ = σ
n′

0

0 .κ0.σ
n′

1

1 . . . σ
n′

k−1

k−1 κk−1.(κ0 . . . κk−1)
m.nk−1

We havecost(γ′) = m · cost(F). If the calyxκ0 . . . κk−1 of F is empty,γ′ corresponds to a flower with
at mostk − 1 petals. Therefore we can assume now that the calyx ofF is not empty.

We assume first that for eachi ∈ [0, k − 1] and eachr ∈ [2..k] such thatn′
i+i′ (mod k) = 0 for all

i′∈ [1, r−1], the pathκ′i =κi.κi+1 (mod k) . . . κi+r−1 (mod k) is simple. Ifn′
i 6= 0 for at least twoi’s then

γ′ corresponds to a flower with at mostk − 1 petals. On the other hand, ifn′
i 6= 0 for at most onei then

the calyxκ0...κk−1 is a circuit andγ′ corresponds to a flower with at most2 petals and an empty calyx.
We can assume now that there arei ∈ [0, k − 1] andr ∈ [2..k] such thatn′

i+i′ (mod k) = 0 for all
i′ ∈ [1, r − 1] and the pathκ′i = κi.κi+1 (mod k) . . . κi+r−1 (mod k) is not simple. At this point we can
use Prop. 5.6 to regardγ′ as a flower with at mostk petals and whose calyx is smaller than the calyx of
F .

Corollary 5.8. LetF be a flower. We can compute in polynomial time a flowerF ′ with at mostp petals
and such thatcost(F ′) = m · cost(F) for somem ∈ N \ {0}.

Proof. Observe that Prop. 5.7 yields a flower with at mostk− 1 petals if the calyx of the given flower is
empty. Consider a flower withk > p+1 petals. First we apply Prop. 5.7 iteratively until we get a flower
with at mostk − 1 petals. Next we iterate this first step until we get a flower with at mostp petals.

Example 5.9. We continue Example 5.4 to illustrate the last step of the proof of Theorem 3.4. The
flowerFω1+2·ω2

= a1.l
15
1 .(a2.a3.a1).a2.l

18
2 .(a3.a1.a2).a3 has four petals:l1, l2, a2.a3.a1, anda3.a1.a2.

Sincea2.a3.a1 anda3.a1.a2 have the same cost, one of them can be removed and we get the newflower
F ′ = a1.l

15
1 .(a2.a3.a1)

2.a2.l
18
2 .a3 with only three petals. Further, using a linear programmingsolver

yields: 12 · cost(l1) + 9 · cost(l2) + 5 · cost(a2.a3.a1) = ~0. Similarly to the proof of Cor. 4.7, we
observe that5/2 > 12/15 > 9/18, so we can remove the petala2.a3.a1 from F ′ and get a last flower
F ′′ = a1.l

51
1 .a2.l

72
2 .a3.(a1.a2.a3)

4 with only two petalsl1 and l2, and a calyx that is iterated 5 times.
Note thatcost(F ′′) = 5 · cost(Fω1+2·ω2

).

This example concludes the illustration of the construction of a flower from a multiset of wings. Note
here that the simpler flowerF ′′′ = a1l

5
1.a2.l

3
2.a3 is also pathological and shares withF ′′ its structure:

They have the same petals and the same calyx. Therefore, in practice, it might be useful to reduce the
iteration factors of the resulting flower at the end of this process, in order to provide the user with a
simpler counter-example.

6. Conclusion and future work

In this paper we tackle the problem of illustrating a structural bug detected as a pathological circulation
in a concise way. We propose to represent counter-examples for structural termination in the form of a
flower, that is, iterated circuits connected by simple paths. Our main result shows how to compute such
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a structure in polynomial time (Th. 3.4) from any given pathological circulation. Further we need onlyp
iterated circuits in such a flower. Interestingly this result applies immediately to structural boundedness.
We can draw a parallel between this setting and the emptinessproblem for Büchi automata. Accepting
infinite words are detected by means of lasso-like wordsu.vω whereu leads from the initial state to an
accepting state andv is a circuit over this accepting state. Besides the title of this paper is inspired by
Trivedi’s blog [25] that suggests another title for the seminal paper [26]. Indeed we claim that flowers
should play the rôle of lassos when it comes to structural properties of a VASS.

We give a slightly involved construction of flowers that makes use of an intermediate representative
format as a multiset of wings (Th. 3.9), a result first presented in [2]. It would be nice to build flow-
ers from circulations directly, possibly with adequate circuits as inputs. However, so far, we failed to
design such an alternative construction or any simpler valid approach. The point is that adding a petal
to a flower may require to adapt and, more important, to iterate the calyx. This constraint corresponds
to the multiplication by 3 of the given circulation (and the partially constructed multiset of wings) in
Algorithm 2 in order to keep the remaining circulation connected when a new wing is built. The iteration
of the calyx makes the insertion of further petals more difficult: Intuitively, the goal would be similar
to building a representative multiset of wings such that each wing is iterated the same number of times.
Besides, we have observed that flowers that do not iterate their calyx are easier to handle. Furthermore
the construction of a flower from a multiset of wings consistsessentially in concentrating the iteration
factors in the petals and simplifying the description of theconnecting paths into a single calyx. Anyway,
a simpler construction of a flower from a circulation would bevaluable.

Several technical steps detailed in this paper rely on the multiplication factor allowed from the cost
of the given circulation to the cost of the representative flower. This feature is necessary to keep the
structure connected along its construction and to reduce the number of iterated components at the end.
It is also useful to regard iterated wings as flowers. We have observed that it is a good idea to try to
reduce the values of iterations within a flower built in this way, in order to get a new simpler flower
with the same structure but with no particular link with the cost of the original pathological circulation.
Finding alternative iteration values with a bounded size oreven minimizing their sum by integral linear
programming will probably prove to be useful in practice to get a simpler flower. Finding shortest
counter-examples is often desirable in automated verification, because they are easier to analyse, see e.g.
[5, 16]. Thus, considering pathological cycles built over aminimal number of arcs, or with a minimal
number of interacting places, is certainly valuable. Unfortunately, searching for such circulations is NP-
hard [2]. Still, it would be interesting to design a method tocompute such a circulation effectively using
the powerful solvers available nowadays.

Message sequence graphs are a well-known formalism to describe communication protocols by
means of partial orders of events called message sequence charts [9, 10]. As discussed in [1], this model
can be regarded as a special case of VASSs when the latter are provided with a partial-order semantics.
In this way, new features can be stirred into message sequence graphs such as message loss, message
duplication, counters or timers. For that reason we found ituseful to develop a prototype that implements
the model-checking and the reachability techniques from [1]. In the future our verification tool should
benefit from the description of structural bugs by flowers presented in this paper. The model of VASS is
also similar to communicating finite-state machines (CFM).However the latter adopt a FIFO restriction
on the ordering of messages along executions [3]. Many properties decidable for VASS are undecidable
for CFM due to this restriction, in particular structural termination [20]. Thus cycles and circulations are
not representative of structural bugs in this context and our results have no chance to apply to this model.
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