
Proceedings of Machine Learning Research 93:17–29, 2019 International Conference on Grammatical Inference

Inferring DFA without Negative Examples

Florent Avellaneda florent.avellaneda@crim.ca

Alexandre Petrenko alexandre.petrenko@crim.ca

Computer Research Institute of Montreal

405 Ogilvy Avenue, Suite 101

Montreal (Quebec), H3N 1M3, Canada

Editors: Olgierd Unold, Witold Dyrka, and Wojciech Wieczorek

Abstract

The inference of a Deterministic Finite Automaton (DFA) without negative examples is
one of the most natural inference problems. On the other hand, it is well known that DFA
cannot be identified in the limit from positive examples only.

We propose two modifications of this problem to make it solvable, i.e., identifiable in
the limit, while remaining rather close to the original problem. First, we propose to use the
inclusion of languages to reason about complexity and infer the simplest solution. Second,
we set the maximum number of states for the inferred DFA. These changes bring new means
to control the solution space. While the language inclusion allows us to choose a simplest
solution among possible solutions, the maximum number of states determines the degree
of approximation. We propose an efficient inference method based on the incremental use
of a SAT solver and demonstrate on a practical example the relevance of our approach.

Keywords: Grammatical Inference, Learning from Text, Inference, DFA, Inferring with-
out Negative Examples, SAT Solving, Identifiable in the Limit.

1. Introduction

The problem of inferring a DFA from positive examples only is a long standing problem
studied in numerous works. Also referred to ”learning from text” in literature, this problem
is considered by many to be the essence of language learning. As de la Higuera (2010)
conveys, it is in a sense the initial problem, the one with least constraints.

At the same time, Gold (1967, Theorem I.8) showed that any class of languages over an
alphabet Σ that contains every finite language together with at least one infinite language
over Σ cannot be correctly inferred from positive examples. Since this applies even to the
class of finite-state languages over Σ, several approaches were proposed trying to make the
problem easier. The classic approach is to consider negative examples (Gold, 1978) or calling
an Oracle (Angluin, 1987). Another approach is to focus on particular language classes.
For example, Angluin (1979) introduces the class of pattern languages where a pattern is
defined to be a concatenation of constants and variables, and the language of a pattern is
the set of strings obtained by substituting constant strings for the variables.

There exists also an approach adopting a probabilistic view by learning distributions over
strings (Clark and Thollard, 2004; Carrasco and Oncina, 1999; Abe and Warmuth, 1992).
Thus, by assuming that the examples follow the distribution probabilities, the problem can

c© 2019 F. Avellaneda & A. Petrenko.

Inferring DFA without Negative Examples

be solved. However, since the probabilistic approach has a high complexity, most of the
work use heuristics addressing the problem.

Although probabilistic approaches are very popular and elegant, we take a radically
different approach in this paper.

Our approach also aims at easing the problem by modifying the initial setup. We
make two modifications to the classical DFA inference approach from positive and negative
examples to adapt it to the inference without negative examples. This allows us to solve
the problem of identifiability in the limit, as defined by Gold (1967). A class of languages
is identifiable in the limit by an algorithm if for any language L of this class, after a certain
number of examples, the algorithm always infers the same language L.

When we want to infer a DFA we look for the minimal automaton consistent with
the given examples. This approach is very natural and follows the principle of parsimony
according to which we usually choose the simplest solution. However, trying to minimize
the number of states does not make much sense in the absence of negative examples. Indeed,
a single state automaton accepting all strings in Σ∗, that we call here the chaos machine,
is a trivial and universal solution. We propose to use the inclusion of languages to reason
about complexity and choose the simplest solution. Thus, we consider that one DFA is
simpler than another if its language is strictly included in the language of the latter. The
first modification fixes the problem of universal simplest solution but yet a trivial solution
exists: it suffices to infer an acyclic DFA accepting only the positive examples. This is
the simplest solution because only observed words are represented. However, we want to
learn the totality of a language and not just the observed subset of this language and to
use a smaller set of states. To this end, we add another modification: we set the maximum
number of states for the inferred DFA.

These changes bring new means to control the solution space. While the language
inclusion allows us to choose a simplest solution among conjectures with the equal number
of states, the maximal number of them determines the degree of approximation. Thus, the
more states are allowed, the more precise the model will be. Considering that the DFA that
accepts exactly the positive examples is a base solution, decreasing the maximal number
of states increases the language of the inferred DFA. In the extreme case, when n = 1, the
chaos machine will be the result.

Although the problem is NP-complete, we are encouraged by a recent efficient inference
technique (Avellaneda and Petrenko, 2018) that is based on the incremental resolution of a
Boolean formula by a SAT solver. The use of such a method provides reasonable execution
time as Heule and Verwer (2010) have already shown.

The paper is organized as follows. Section 2 contains definitions. Section 3 details
the method that uses a SAT solver. Section 4 elaborates an algorithm for checking the
uniqueness of a solution. Section 5 introduces characteristic positive examples as a set of
strings such that only one DFA can be inferred with our method and proposes an algorithm
to construct it for a given DFA. In Section 6, we use our method to infer a model of a
communication protocol. Finally, we conclude in Section 7.

18

Inferring DFA without Negative Examples

2. Definitions

A DFA is a 5-tuple A = (Q,Σ, δ, q0, F), consisting of a finite set of states Q, a finite set
of symbols Σ called the alphabet, a (partial) transition function δ : Q × Σ → Q, an initial
state q0 ∈ Q and a set of accepting states F ⊆ Q. We denote by q

a−−→ q′ a transition from
state q to state q′ with symbol a ∈ Σ and by |A| the number of states in Q.

The partial transition function δ can be extended, giving the following recursive defini-
tion of δ : Q×Σ∗ → Q. δ(q, ε) = q and δ(q, wa) = δ(δ(q, w), a) where ε is the empty string,
w ∈ Σ∗, a ∈ Σ and q ∈ Q. We denote by L(A) = {w ∈ Σ∗ | δ(q0, w) ∈ F} the set of all
strings accepted by the DFA A.

A sample is a tuple of two finite sets of strings S = (S+, S−). The set S+ (positive
examples) represents accepted strings and the set S− (negative examples) represents rejected
strings. We say that a DFA A is consistent with a sample S = (S+, S−) if S+ ⊆ L(A) and
S− ∩ L(A) = ∅.

If S− is absent we call a DFA consistent with S+ a conjecture for S+. Limiting the
maximum number of states in conjectures, we have the following definition

Definition 1 A DFA A is an n-conjecture for S+ if S+ ⊆ L(A) and |A| ≤ n.

Note that since the number of n-conjectures is bounded, the inference problem without
negative examples becomes decidable.

Definition 2 A DFA A is minimal if for each A′ such that |A′| < |A| we have L(A) 6=
L(A′).

Definition 3 A minimal DFA A is a simplest n-conjecture for S+ if for each n-conjecture
A′ for S+ we have L(A′) 6⊂ L(A).

The idea behind this definition is to use the languages recognized by DFAs to decide if
one automaton is simpler than the other. Moreover, a conjecture to be simplest need not to
have equivalent states, thus a simplest n-conjecture is also a minimal DFA. The language
recognized by a DFA is prefix closed if and only if Q = F .

In this paper, we will consider only prefix closed languages, but our results can be
adapted for not prefix closed languages. We let AChaos denote the chaos machine, i.e., DFA
with a single state accepting all strings over Σ.

3. Inference with SAT Solving

In this section, we show that a simplest n-conjecture could be inferred from positive exam-
ples S+ using SAT solving. Inferring it, we also infer negative examples as counterexamples
that were used to refute the intermediate conjectures.

This section is organized as follows. The Section 3.1 presents our algorithm. This
algorithm refers to SAT formulas described in Section 3.2. Finally, Section 3.3 presents an
optimization of our SAT formulation by breaking symmetry.

19

Inferring DFA without Negative Examples

3.1. Inference algorithm

We elaborate an algorithm which iteratively adds constraints to a SAT formula (Algo-
rithm 1). The algorithm works as follows. We start by considering the conjecture AChaos

as the current solution A. Indeed, this conjecture is consistent with S+. Then we try to
find a solution with a smaller language iteratively. To do that we search for a DFA A′
with at most n states satisfying a growing set of constraints (initially we do not have any
constraints).

• If A′ is not consistent with S+, i.e., there exists a string w in S+ that is not accepted
by A′, then we add the constraint that w has to be accepted and try to find another
conjecture A′.

• If A′ is consistent with S+, but not language-included in the current solution A, i.e.,
there exists a string w in L(A′) that is not accepted by A, then we add the constraint
that w must not be accepted, add w in S− which is initially empty, and search for a
new conjecture A′.

• If A′ is consistent with S+ and strictly language-included in A, so there exists w ∈
L(A)\L(A′), then we consider A′ as the updated current solution, add the constraint
in order not to find A′ again, and the constraint that w must not be accepted, include
w into S−, and try to find a new conjecture A′.

• If A′ is consistent with S+ and has the same language as A then we add the constraint
excluding A′ in order not to find it again and try to find a new conjecture A′.

The process continues as long as the constraints are satisfiable. When no more solution can
be found by the SAT solver, we obtain a simplest n-conjecture by minimizing, if needed, the
number of states of A. Indeed, minimization is required because by definition a simplest
n-conjecture is minimal. The DFA before minimization has at most n states, but it is not
necessarily minimal. A simplest n-conjecture is not always unique and the obtained set of
negative examples S− used to refute the intermediate conjectures represents assumptions
made inferring A.

Theorem 4 Given positive examples S+ and integer n, Algorithm 1 returns a simplest
n-conjecture.

Proof Suppose that the DFA A returned by Infer is not a simplest n-conjecture. We
know that the algorithm returns an n-conjecture because an invariant is that at any time
A is consistent with S+. We also know that the algorithm returns a minimal DFA because
a call to a minimization function is performed at the end of the function. So if A is not a
simplest n-conjecture, then there exists an n-conjecture A′ for S+ such as L(A′) ⊂ L(A).
There are three types of constraints in C: string has to be accepted, string has not to be
accepted and a conjecture has to be excluded. When there is no more solution satisfying
the constraints C it means that no DFA is left that accepts the set of strings S+ and does
not accept any string of S−. If L(A′) ⊂ L(A) then A′ accepts all the strings of S+ and does
not accept any string of S− and therefore A′ is excluded. However, a conjecture is excluded

20

Inferring DFA without Negative Examples

only when a smaller or equal (by the language inclusion) n-conjecture is found. So L(A′)
is not included in L(A), a contradiction.

The termination is assured because in each execution of the while loop, at least one DFA
is removed from the solutions satisfying the constraints C. Thus, the loop will eventually
be exited because the number of DFAs with at most n states is bounded.

Algorithm 1: Inferring a simplest n-conjecture

Input: Positive examples S+ and an integer n
Output: A simplest n-conjecture for S+ and negative examples S−

1 Function Infer (S+, n):
2 Initialize C to ∅, S− to ∅ and A to AChaos

3 while C is satisfiable do
4 Let A′ be a DFA of a solution of C.
5 if S+ * L(A′) then
6 Let w be a shortest1 string in S+ \ L(A′).
7 C ← C ∧ Cw, where Cw is clauses encoding the requirement that w must be in the

conjecture (Table 1).
8 else
9 if L(A′) ⊆ L(A) then

10 C ← C ∧ CA, where CA is a clause to further exclude the current solution
(Clause (5)).

11 if L(A′) ⊂ L(A) then
12 Let w be a shortest string in L(A) \ L(A′).
13 C ← C ∧ Cw, where Cw is clauses encoding the requirement that w must

not be in the conjecture (Table 2).
14 S− ← S− ∪ {w}
15 A ← A′

16 else
17 Let w be a shortest string in L(A′) \ L(A).
18 C ← C ∧Cw, where Cw is clauses encoding the requirement that w must not be

in the conjecture (Table 2).
19 S− ← S− ∪ {w}

20 return min(A), S− // min is the minimization of a DFA

Definition 5 We say that S = (S+, S−) is a characteristic sample for a minimal DFA A
if A is consistent with S and if for each A′ consistent with S such that |A′| ≤ |A| we have
that A′ is isomorphic to A.

The idea of the characteristic sample definition is very close to that of Oncina and
Garcia’s (Oncina and Garćıa, 1992). They define conditions such that if a sample is char-
acteristic for a DFA then their algorithm is guaranteed to return a canonical representation
of this DFA. Our definition refers not to any particular algorithm, but to a minimal DFA
consistent with the sample S.

The execution time of this algorithm is determined by two factors, a SAT instance solving
complexity and the number of instances created by the algorithm, as it works incrementally.
In the worst case, the number of iterations increases exponentially with n.

1. by lexicographical order

21

Inferring DFA without Negative Examples

Theorem 6 Let (A, S−) be the result of Algorithm 1 for S+ and n. Then (S+, S−) is a
characteristic sample for A.

Proof Suppose that the theorem does not hold. By Definition 5, there exists a DFA A′
such that |A′| ≤ |A, consistent with the sample S = (S+, S−) that is not isomorphic to
A. When there is no more solution satisfying the constraints C it means that there is no
DFA left that accepts the set of string S+, does not accept any string of S− and has not
yet been excluded. Since A′ contains the strings of S+ and does not accept any string of
S−, A′ is excluded. A conjecture is excluded only when a smaller or equal (by the language
inclusion) n-conjecture is found. However, the excluded conjectures that do not have the
same language as A are not consistent with S, because, when a smaller conjecture is found, a
string not included in the language of the last conjecture is added to S−. So L(A) = L(A′).
Since A is minimal, if L(A) = L(A′) then |A′| = |A| and A′ is isomorphic to A.

Example 1 Let us consider S+ = {ε, a, aa, aaa, b, bb, bbb} and execute Infer(S+, 2). We
present all intermediate DFAs generated by a SAT solver and all the constraints that are
added incrementally. Initially, C has no constraints, the solver finds a trivial solution that
corresponds to a DFA recognizing only the empty language (Fig. 1(a)). The constraint ”a
must be in the conjecture” is therefore added to C. The next DFA found (Fig. 1(b)) is not
consistent with S+. Because b is the shortest string in S+ \ L(A′), the constraint ”b must
be in the conjecture” is added to C. After that, we obtain the DFA A′ in Fig. 1(c). For
this DFA it holds that L(A′) ⊆ L(A). The DFA is thus considered as the current solution
and constraints are added to not find this same solution any more. The next DFA found
(Fig. 1(d)) is not consistent with S+, so the constraint ”a must be in the conjecture” is
added to C. The next DFA A′ (Fig. 1(e)) is consistent with S+. For this DFA it holds
that L(A′) ⊆ L(A). This DFA is thus considered as the current solution and constraints
are added to not find this same solution any more. The next found DFA (Fig. 1(f)) is also
consistent with S+. Its language is also included in L(A). This DFA is thus considered as the
current solution and constraints are added to not find this same solution any more. The next
DFA in (Fig. 1(g)) is not consistent with S+, the constraint ”bb must be in the conjecture”
is added to C. The next DFA in (Fig. 1(h)) is consistent with S+ but its language is not
included in L(A) i.e., ab is accepted by this DFA, but it is not in L(A). The string ab is added
in S− and the constraint ”ab must not be in the conjecture” is added to C. After adding
this constraint, the formula C is not satisfiable. There is no more DFA satisfying all the
constraints we have. The solution is the last current solution, that is the DFA in (Fig. 1(f))
with S− = {ab}. So, (S+, S−) is a characteristic sample for the DFA in (Fig. 1(f)) because
only this DFA with 2 states is consistent with (S+, S−). Note that in this example there
are two simplest 2-conjectures, the DFAs in (Fig. 1(f)) and (Fig. 1(i)). Negative examples
constructed by the algorithm distinguish the simplest conjectures among each others. In our
example, the negative example S− = {ab} distinguishes the two conjectures because ab is
not accepted by the DFA in (Fig. 1(f)) but is accepted by the DFA in (Fig. 1(i)).

We show in Section 3.2 how to encode the requirements that a string has to be accepted or
not and how to exclude a solution. In Section 3.3 we add breaking symmetry constraints
to improve the efficiency of our formulation.

22

Inferring DFA without Negative Examples

q0

(a) a has to
be ac-
cepted.

q0

a

(b) b has to
be ac-
cepted.

q0

a

b

(c) New 2-
conjecture
is found.

q0 q1

b

a

(d) aa has to be
accepted.

q0 q1

b

a

a

(e) New 2-
conjecture is
found.

q0 q1

b

a

a

(f)
New 2-
conjecture
is found.

q0 q1

b

a

a

(g)
bb has to be ac-
cepted.

q0 q1

b

a

a

b

(h)
ab is not in
the current 2-
conjecture.

q0 q1

a

b

b

(i)
Another
simplest 2-
conjecture.

Figure 1: Intermediate DFAs and the constraints.

3.2. Accepted strings, rejected strings and excluded solutions

In this section, we formulate constraints to ensure that a DFA represented by a solution
of the resulting SAT formula accepts a given string, ditto for a string which should not
be accepted. Given a string w = a1a2...am, we let Aw = (Qw,Σw, δw, q0, Qw) denote the
minimal (linear) DFA accepting w and all prefixes of w. We first consider that the string
must be accepted.

The idea of encoding the constraint is to partition the states of Qw into at most n blocks.
By merging all the states in each block, we obtain a DFA with no more than n states. The
constraints we give to the SAT solver are such that a DFA corresponding to a solution is
consistent with Aw.

Each state q ∈ Q is represented by n Boolean variables vq,0, vq,1, ..., vq,n−1. If the Boolean
variable vq,i is true, this means that the state q is in the block i. We start with constraints
which encode the fact that each state of Qw should be in exactly one block. They consist
in two formulas. The first requires that any state should be in at least one block. For each
state q ∈ Qw, we have the clause: ∨

0≤i<n

vq,i (1)

The second formula requires that each state should be in at most one block. For each
state q ∈ Qw and for all i, j such that 0 ≤ i < j < n, we have the clauses:

¬vq,i ∨ ¬vq,j (2)

Then, we enforce the determinism of solutions by requiring that for two states of the
same block, their successors for any symbol have also to be in the same block. We encode
this property by the following formula. For all q1

a−−→ q2, q
′
1

a−−→ q′2 and i, j such that
0 ≤ i < j < n, we have a Boolean formula (which can be translated trivially into clauses):

(vq1,i ∧ vq′1,i)⇒ (vq′2,j ⇒ vq2,j) (3)

23

Inferring DFA without Negative Examples

Now we consider the case when a string must be rejected. Encoding this, we use again
(2) and (3) but replace (1) by a formula which asserts that the last state of Qw has not to
be a state in a solution. For each i such that 0 ≤ i < n, we have the clauses:

¬vQw[|w|],i (4)

If the last state of Qw is not assigned to any block in a solution, then w is not accepted by
the DFA of the solution.

Finally, to exclude a solution, we just have to add the clause:∨
vq,i=True

¬vq,i (5)

Note that all the states of the resulting DFAs are accepting states. If we do not assume
that the languages we want to infer are prefix- closed, then we must add Boolean variables
to indicate whether each state is accepting or not.

3.3. Breaking symmetry

It is possible that different assignments for a given SAT formula are equivalent, representing
the same solution. In this case, we say that we have symmetry. A good practice is to break
this symmetry (Aloul et al., 2002, 2006; Brown et al., 1988) by adding constraints such that
different assignments satisfying the formula represent different solutions.

A formulation can result in a significant amount of symmetry if any permutation of the
blocks is allowed. To eliminate this symmetry, we use a symmetry breaking method which
forbids block permutations by using a total order on the set of states.

Let < be a total order over the set of states Q =
⋃
w
Qw for all strings to be accepted

and rejected. Based on a chosen order we add the following clauses excluding permutations.
For each q ∈ Q and each i such that 0 ≤ i < n− 1, we have a Boolean formula (which can
be translated trivially into clauses):

(
∧
q′<q

¬vq′,i)⇒ ¬vq,i+1 (6)

Intuitively, these clauses force to use blocks not already assigned when a state requires a
new block.

4. Uniqueness

The definition of the simplicity of n-conjectures does not guarantee the uniqueness. Indeed,
there can be several simplest n-conjectures for given positive examples S+. We are interested
in this section in verifying whether a simplest n-conjecture is unique.

We say that a string w is a distinguishing string for a positive sample S+ and an integer
n if there exist two n-conjectures A and A′ for S+ such that w /∈ L(A) and w ∈ L(A′).
Theorem 7 If there exists a single simplest n-conjecture for S+ then Algorithm 2 deter-
mines its uniqueness, otherwise it returns a distinguishing string.

24

Inferring DFA without Negative Examples

Table 1: Encoding the requirement that w must be in the n-conjecture.

Ref Clauses Condition Meaning

(1) (vq,0 ∨ vq,1 ∨ ... ∨ vq,n−1) q ∈ Qw Each state should be in at least one block.
(2) (¬vq,i ∨ ¬vq,j) 0 ≤ i < j < n Each state should be in at most one block.

(3) (¬vq1,i ∨ ¬vq′1,i ∨ ¬vq′2,j ∨ vq2,j) q1
a−−→ q2 Determinism.

q′1
a−−→ q′2

(6) (
∧

q′<q

¬vq′,i)⇒ ¬vq,i+1 q ∈ Qw Breaking symmetry.

0 ≤ i < n

Table 2: Encoding the requirement that w must not be in the n-conjecture.

Ref Clauses Condition Meaning

(1) (vq,0 ∨ vq,1 ∨ ... ∨ vq,n−1) q ∈ Qw Each state should be in at least one block.

(3) (¬vq1,i ∨ ¬vq′1,i ∨ ¬vq′2,j ∨ vq2,j) q1
a−−→ q2 Determinism.

q′1
a−−→ q′2

(4) ¬vQw[|w|],i 0 ≤ i < n The string w is not accepted.
(6) (

∧
q′<q

¬vq′,i)⇒ ¬vq,i+1 q ∈ Qw Breaking symmetry.

0 ≤ i < n

Proof If the algorithm returns w, then we have L(A) 6⊂ L(A′) where A′ is a simplest
n-conjecture for S+ ∪ {w} with w /∈ S+. Obviously, A′ is a n-conjecture for S+. So there
exists a simplest n-conjecture A′′ for S+ such that L(A′′) ⊆ L(A′). However, this simplest
n-conjecture for S+ cannot be A because L(A) 6⊆ L(A′).

Assume that there exist several simplest n-conjectures for S+ and let A and A′ be two
of them. Because (S+, S−) is a characteristic sample for A, by Definition 5 we know that
A′ is not consistent with (S+, S−). Then there exists w ∈ S− such that w /∈ L(A) and
w ∈ L(A′) and the algorithm will return the distinguishing string w.

Example 2 We call the function CheckUniqueness with the result of Example 1, where A
is in Fig. 1(f), S+ = {aaa, bbb} and S− = {ab}. So, the algorithm CheckUniqueness calls

Algorithm 2: Checking whether A is the single simplest n-conjecture for S+
Input: An n-conjecture A and a characteristic sample (S+, S−) for A.
Output: Return True if A is the only simplest n-conjecture for S+ and return a

distinguishing string otherwise.
1 Function CheckUniqueness (A, (S+, S−)):
2 foreach w ∈ S− do
3 (A′, S′−)← infer(S+ ∪ {w}, |A|)
4 if L(A) 6⊂ L(A′) then return w ;

5 return True

25

Inferring DFA without Negative Examples

the function infer({aaa, bbb, ab}, 2) in line 3. The simplest 2-conjecture shown in Fig. 1(i)
will be inferred and so, the string w = ab will be returned as a distinguishing string.

5. Characteristic Positive Examples

Once we know how to determine a simplest n-conjecture for a given set of strings, a natural
question on the inverse problem arises. Given a minimal DFA A with n states, find S+ a
subset of L(A), such that the unique n-conjecture for S+ is A.

Definition 8 Positive examples S+ are characteristic positive examples for A if the sim-
plest |A|-conjecture for S+ is A and it is unique.

Notice that characteristic positive examples should not be confused with characteristic
samples consisting of positive and negative examples. Removing negative examples from a
characteristic sample does not necessarily result into characteristic positive examples.

We show in this section that it is always possible to find characteristic positive examples
and give an algorithm to generate them (Algorithm 3). This result is interesting because
when A is a black box, it says that with a set of observation S+, sufficiently large and
representative, we will be able to infer correctly a model for A.

Algorithm 3: Generation of characteristic positive examples

Input: A DFA A
Output: Characteristic positive examples for A

1 Function GenerateCharacteristicPositiveExamples (A):
2 S+ ← ∅
3 while S+ is not a characteristic positive examples for A do
4 Let A′ be a simplest |A|-conjecture for S+ for which there exists w ∈ L(A) such that

w /∈ L(A′).
5 S+ ← S+ ∪ {w}
6 return S+

Theorem 9 For each DFA A, Algorithm 3 returns characteristic positive examples.

Proof The algorithm terminates when S+ is a characteristic positive examples. We prove
that it terminates. In each cycle, because S+ is not a characteristic positive examples, we
can find a simplest |A|-conjecture A′ for S+ such that there exists w ∈ L(A) \L(A′). Then
at least one conjecture becomes inconsistent with S+ by adding w in S+. Hence, the number
of conjectures is strictly decreasing in each cycle. Because the maximum number of states
is fixed, the number of conjectures is bounded and therefore the algorithm terminates.

Theorem 10 If S+ is characteristic positive examples for A, then each S′+ such that
S+ ⊆ S′+ ⊆ L(A) is also characteristic positive examples for A.

Proof Let us show that if A′ is a simplest |A|-conjecture for S′+ then A′ = A. Assume
that A′ is a simplest |A|-conjecture for S′+. Then S′+ ⊆ L(A′) and because S+ ⊆ S′+, we
know that S+ ⊆ A′.

Because A is a simplest |A|-conjecture for S+, we know that L(A′) 6⊂ L(A). Moreover,
because A is a unique simplest |A|-conjecture for S+, we also know that L(A′) ⊆ L(A).
So, A′ = A.

26

Inferring DFA without Negative Examples

Corollary 11 The prefix-closed languages generated by DFAs with n states are identifiable
in the limit from positive examples by searching the simplest n-conjectures.

Proof Let A be a minimal DFA with n states. By Theorem 9 we know that there exists
characteristic positive examples S+ and by Theorem 10 we know that for each S′+ ⊆ L(A)
such that S+ ⊆ S′+, the simplest n-conjecture is A.

6. Experiments

To evaluate the proposed approach, we infer the model of a communication protocol from
messages over the communication channel between two machines (Endriss et al., 2003). The
model is represented in Fig. 2(e).

We use a set of 50 traces generated by random walks and increase the maximum number
of states of a DFA to infer. The prototype was implemented in C++ calling the SAT solver
Cryptominisat (Soos, 2010). The experiments were carried out on a machine with 8 GB of
RAM and an i7-3537U processor. The time required to infer a DFA with n = 7 is about 4
seconds and less than one second for smaller numbers of states.

When we reach n = 7, we find the minimal automaton having the same language as the
DFA modeling the communication protocol. Note that with only 50 traces, our approach
was able not only to correctly infer the communication protocol, but also to guarantee the
uniqueness of the solution.

It is interesting to notice that when the number of states is smaller than the minimum
number of states required to exactly represent the communication protocol, we obtain ap-
proximations at various levels of abstractions defined by the number of states. Although
the relevance of approximations when using values of n smaller than 7 remains subjective
in this example, we can still guarantee that each result is optimal in the sense that it is an
n-conjecture.

For n = 2 the abstraction is significant, but still rather adequate: numerous messages
are exchanged before ending up when B accepts or refuses or A retracts.

For n = 4 and n = 5, the model is more precise. It is easy to identify each state. State q0
is the initial state, A has to do a request. State q1 is the final state. For the state q2, B has
four possible choices: accept, refuse, veto and challenge. For the state q3, A is challenged
and need to make a choice between justify and retract. Notice that the number of states
of the conjecture for n = 5 is four. It simply means that in this case, there is no DFA with
five states refining the model.

For n = 6, the model almost matches the specification. The main difference is that in
the model with fewer states, B can refuse after having challenged A whereas in the original
specification, B can only ask for a challenge again or accept.

7. Conclusions

In this paper we considered the problem of inferring a DFA without negative examples. We
made two modifications to the inference problem of DFA from positive and negative exam-
ples by adapting it to the case when negative examples are absent. The first modification
is the use of the language inclusion to reason about complexity and choose the simplest
solution. The second modification is fixing the maximum number of states of a DFA to

27

Inferring DFA without Negative Examples

q0 q1

A:justify,

A:request,

B:challenge,

B:veto

A:retract,

B:accept,

B:refuse

(a) Inferring with n = 2.

q0 q2

q1

A:justify,

B:challenge

A:request

B:veto

A:retract,

B:accept,

B:refuse

(b) Inferring with n = 3.

q0 q2 q3

q1

A:request

B:veto

B:challenge

A:justify

B:accept,

B:refuse
A:retract

(c) Inferring with n = 4 and n = 5.

q0 q1 q2

q3 q4

q5
A:request

B:accept, B:refuse

B:challenge

A:justify

A:retract

B:veto

A:request

B:accept
B:challenge

(d) Inferring with n = 6.

q0 q1 q2

q3 q4 q5

q6
A:request

B:accept, B:refuse

B:challenge

A:justify

A:retract

B:veto

A:request

B:challenge

A:justify

A:retractB:accept

(e) The protocol.

Figure 2: Inferring the communication protocol

infer. Then with these two modifications, we proposed an approach to solve the formulated
inference problem.

We presented an efficient inference algorithm that uses a SAT solver. We also showed
how to check that a solution is unique and to generate characteristic positive examples from
a DFA. Finally, we demonstrated on a practical example the relevance of our approach and
the use the maximum number of states for obtaining various approximations of a complex
language.

We focused in this paper on an exact algorithm solving this inference problem. More
research is needed to find heuristics which could allow us to mitigate the complexity issues
and thus increase the scalability of the proposed approach. Since we use in this paper a
general case of DFAs, it could also be interesting to refine our approach to deal with more
specific automata models.

References

Naoki Abe and Manfred K Warmuth. On the computational complexity of approximating
distributions by probabilistic automata. Machine learning, 9(2-3):205–260, 1992.

Fadi A Aloul, Arathi Ramani, Igor L Markov, and Karem A Sakallah. Solving difficult
SAT instances in the presence of symmetry. In Proceedings of the 39th annual Design
Automation Conference, pages 731–736. ACM, 2002.

Fadi A Aloul, Karem A Sakallah, and Igor L Markov. Efficient symmetry breaking for
boolean satisfiability. IEEE Transactions on Computers, 55(5):549–558, 2006.

28

Inferring DFA without Negative Examples

Dana Angluin. Finding patterns common to a set of strings. In Proceedings of the eleventh
annual ACM symposium on Theory of computing, pages 130–141. ACM, 1979.

Dana Angluin. Learning regular sets from queries and counterexamples. Information and
computation, 75(2):87–106, 1987.

Florent Avellaneda and Alexandre Petrenko. FSM inference from long traces. In Interna-
tional Symposium on Formal Methods, pages 93–109. Springer, 2018.

Cynthia A Brown, Larry Finkelstein, and Paul Walton Purdom Jr. Backtrack searching
in the presence of symmetry. In International Conference on Applied Algebra, Algebraic
Algorithms, and Error-Correcting Codes, pages 99–110. Springer, 1988.

Rafael C Carrasco and Jose Oncina. Learning deterministic regular grammars from stochas-
tic samples in polynomial time. RAIRO-Theoretical Informatics and Applications, 33(1):
1–19, 1999.

Alexander Clark and Franck Thollard. PAC-learnability of probabilistic deterministic finite
state automata. Journal of Machine Learning Research, 5(May):473–497, 2004.

Colin de la Higuera. Grammatical inference: learning automata and grammars. Cambridge
University Press, 2010.

Ulle Endriss, Nicolas Maudet, Fariba Sadri, and Francesca Toni. Logic-based agent com-
munication protocols. In Workshop on agent communication languages, pages 91–107.
Springer, 2003.

E Mark Gold. Language identification in the limit. Information and control, 10(5):447–474,
1967.

E Mark Gold. Complexity of automaton identification from given data. Information and
control, 37(3):302–320, 1978.

Marijn JH Heule and Sicco Verwer. Exact DFA identification using SAT solvers. In Inter-
national Colloquium on Grammatical Inference, pages 66–79. Springer, 2010.

José Oncina and Pedro Garćıa. Identifying regular languages in polynomial time. Advances
in Structural and Syntactic Pattern Recognition, 5(99-108):15–20, 1992.

Mate Soos. CryptoMiniSat 2.5. 0. SAT Race competitive event booklet, 2010.

29

	Introduction
	Definitions
	Inference with SAT Solving
	Inference algorithm
	Accepted strings, rejected strings and excluded solutions
	Breaking symmetry

	Uniqueness
	Characteristic Positive Examples
	Experiments
	Conclusions

