
Using Attack Pattern for Cyber Attack Attribution
Florent Avellaneda

CRIM
Montréal, Canada

Florent.Avellaneda@crim.ca

El-Hackemi Alikacem
CRIM

Montréal, Canada
El-Hachemi.Alikacem@crim.ca

Femi Jaafar
CRIM

Montréal, Canada
Fehmi.Jaafar@crim.ca

Abstract—A cyber attack is a malicious and deliberate attempt
by an individual or organization to breach the integrity, confiden-
tiality, and/or availability of data or services of an information
system of another individual or organization. Being able to
attribute a cyber attack is a crucial question for security but
this question is also known to be a difficult problem. The main
reason why there is currently no solution that automatically
identifies the initiator of an attack is that attackers usually use
proxies, i.e. an intermediate node that relays a host over the
network. In this paper, we propose to formalize the problem of
identifying the initiator of a cyber attack. We show that if the
attack scenario used by the attacker is known, then we are able
to resolve the cyber attribution problem. Indeed, we propose a
model to formalize these attack scenarios, that we call attack
patterns, and give an efficient algorithm to search for attack
pattern on a communication history. Finally, we experimentally
show the relevance of our approach.

Index Terms—Cyber Attribution, Cyber Attack, Attack Pat-
tern

I. INTRODUCTION

Cyber attribution has several definitions in the scientific
literature. For example, Boebert [2] defined cyber-attribution
as “the activity of analyzing malicious functionality and ma-
licious packets, and using the results of the analysis to locate
the node that initiated, or is controlling, the attack”. Another
more general definition considers that the identification of
the location of an attacker or its intermediary is also a part
of cyber attribution [15]. In this case, the location can be
specified by the Internet Protocol (IP) address, account name,
or geographical address [4]. In this paper, we consider the first
definition of cyber attribution and seek to identify the machine
that initiated a cyberattack against an information system.

Being able to attribute a cyberattack is crucial for several
reasons. First, knowing the source of an attack generally allows
us to deduce the intentions of the attacker. Thus, the target of
the cyberattack can implement the necessary actions to face the
attack adequately. The second reason is that cyber attribution
may reduce the risks of cyber threats as potential attackers
will care about the risk of being identified and punished. Thus,
cyber attribution as a deterrence system is essential to scale
up the state’s credibility and security [6], [15]. Finally, cyber
attribution will allow cyber analysts to prioritize incidents
effectively and proactively based on adversary purposes and
used technique [6].

Although the problem of cyber attribution is important,
it is also known to be a challenging problem. One of the
main challenges in cyber attribution is the reliability of the

IP address of malicious packets related to a cyberattack [6].
Indeed, almost all cyber attacks carried out through proxies.
Thus, we are interested in the problem of identifying a cyber
attack that uses proxies.

In this paper, we assume that the entire history of the
communications between machines, including the malicious
messages of the attack, is available. In practice, it is sufficient
that this set contains all the messages that were used in
the attack. For technical feasibility, we consider only the
sources/recipient in the communication history and the time
they occurred. Recent work shows that this hypothesis is
feasible in practice [11].

Considering that the attack has already happened, and the
messages of the attack received by the target are identified
within the communication history, our goal is to identify the
initiator of this attack. We propose to use the concept of attack
pattern to resolve the problem of cyber attribution. An attack
pattern corresponds to the strategy used by the attacker to send
messages (the number of proxies used, the order of messages,
the timing between exchanges, etc). Attack pattern is realistic
because the patterns can be determined from previous incidents
and documented attacks and were widely used in previous
works [8].

The paper is organized as follows. Section 2 reviews the
related works. Section 3 and 4 presents the problem of cyber
attribution. Section 5 explore the concept of finding an attack
model in a history log and proof that this problem is NP-
Complete. Section 6 proposes an algorithm to effectively solve
this problem. Section 7 presents the experimental result to
show the relevance of our approach. Finally, we conclude in
section 8.

II. RELATED WORKS

Several approaches have been proposed and used to face
cyber attribution challenges. We summarize such approaches
with some examples of related work.

A. Query Hosts and “Hack Back”

Query hosts for internal state information requires that there
be a pre-existing query function. If an attacker controls the
host, this may alert the attacker and make the information
much less reliable [7]. A “hack back” does this without
the owner’s permission, and clearly requires significant legal
control. The inconvenient of this technique is that being able

to make a hack back is not an easy task and assumes that the
attacker has a security flaw that we can exploit.

B. Transmit Separate Messages

When routers route a message, they can send a separate
additional message to aid in attribution. The limitation of
this approach is that if the separate messages are sent for
all messages, this could easily overwhelm network resources.
This idea was first proposed by Bellovin and other researchers
as follows: every router should sample a packet with a small
probability, copy its content onto a special ICMP packet, add
information about the adjacent upstream and/or downstream
routers, and send it towards the same destination as the original
packet. The victim of an attack can then use these packets to
reconstruct the paths back to the attackers [1].

C. Exploit Attacker Self-Identification

The information the attacker sends, intentionally or not,
is used to identify him or her. In some cases, the defender
can cause the attacker to send this data. When this technique
works, it can directly reveal the attacker regardless of how
well he or she is hidden usually, but many of these techniques
depend on highly technical and specialized approaches (e.g.,
beacons, web bugs, cookies, and watermarking) that are easily
foiled once an attacker knows about them. The defender can
also specially mark data flowing back to the attacker, and
then have intermediate systems detect these markings. This
can trace the attacker through stepping stones, but requires
detectors of these reverse flows and may be thwarted by
encryption [15].

The defect of this technique is that an attacker can provide
false information to pretend to be another person. Thus, from
a theoretical point of view, this type of identification does not
allow to be sure to correctly identify the initiator of an attack.

D. Reasoning-based Approach

A reasoning-based technique is used in artificial intelli-
gence and knowledge-based systems to generate conclusions
from available knowledge using logical techniques such as
deduction and induction. These approaches model technical
knowledge from attack activities, information about known
attacks, as well as diverse knowledge such as motivations,
political crises, and so on that can justify the attack; then, a
reasoning mechanism allows to conclude at the possible origin
of the attack [9], [10]. The problem with this approach is
that an expert is required to build the knowledge base and
correctly setting the probabilities. Unfortunately, this task is
very complex.

III. MODELING THE CYBER ATTRIBUTION PROBLEM

The communication history between machines in a given
network is modelled by a history log defined as follows.

Definition 1. A history log H = (PH ,MH , T) is given by:
• A set of machines PH in the network.
• A set of messages MH . Each element m ∈ MH is a

message. We denote by dom(m) the machine that sends

the message and by cod(m) the machine that receives the
message.

• A time function T : MH → N. If m ∈ MH , then we
denote by T (m) the time when the message exchange
occurred.

For efficiency, we consider time as a series of time steps
which are a period of times represented by an integer. In our
experiments, we use an interval of 10 ms as a time step.
Also, for simplicity, we consider that a message exchange is
instantaneous and assume that messages cannot be lost.

Let H be a history log and suppose there is a machine
PA ∈ PH in the network that initiated an attack. Suppose we
have a set of messages identified as malicious whose initiator
is PA. The question is identifying the machine PA. This
question is complicated when communications are not direct.
Indeed, the machine PA is able to send a message to a machine
PP asking it to send the message a to the target machine
PT . Even if the message has been labeled as malicious, the
initiating machine of this message is then PA; PP is only an
intermediate machine.

Note that we do not consider the content of the messages in
our modeling, because it is too complicated to save such data
in practice. In addition, data circulating on the network can
be encrypted according to the communication protocols used.

We remark that finding the machine that initiates an attack
m is an intractable problem. To illustrate this statement, let
us consider the history log depicted graphically in Figure 1.
There are two possibilities. The first possibility is that Carol
asked Bob to send the message m to Alice. In this case, Carole
is the initiator of the message m. The second possibility is that
m′ is not related to the m message and in this case, Bob is
the initiator of the message.

Alice Bob Carole

m′

m

Fig. 1. Example of an MSC

IV. ATTACK PATTERN

To make the attribution problem decidable from a history
log, we are using the concept of attack pattern. An attack
pattern corresponds to the strategy used by the attacker to send
messages (the number of proxies used, the order of messages,
the timing between exchanges, etc.). Several previous work [8]
analyzed data and meta data in relation with cyber attacks to
identify attack pattern. Concretely, if the attack is performed
through software (each infected machine follows the instruc-
tions of the software), then an analysis of this software would
extract the attack pattern.

In the rest of the paper, we are using the Messages Sequence
Charts (MSC). The MSCs are a well-known formalism for
describing interaction scenarios between remote sites. MSCs

have been the subject of much work in recent years. They ben-
efit from a standard visual and textual representation (ITU-T
recommendation Z.120) and are close to other formalisms such
as UML sequence diagrams. Concretely, an MSC provides a
graphical description of communications in a network.

An MSC can be seen as a directed acyclic graph where
the nodes represent events (sending or receiving messages)
and the arcs represent the order of relationships between the
different events. Each event is also linked to a process. A
process corresponds to a communicating entity (a machine, a
thread, a user, etc.).

Considering that the message exchanges are instantaneous
in our approach, we simplify the definition of MSC.

Definition 2. An attack pattern P = (PP ,MP , Tmin, Tmax),
is defined by:
• A set of machines PP ⊆ PH .
• A set of messages MP .
• Complete functions Tmin : MP × MP → N and

Tmax : MP × MP → N indicating the minimum
and maximum elapsed time between any two exchanged
messages, respectively.

PT PP PA

[0, 10]

[0, 10]

Fig. 2. Pattern of attack consisting in passing through one proxy.

All messages in an attack pattern are said to be malicious
because they participate in an attack. In practice, malicious
messages from the attack pattern intended for the target
machine and returned by the target machine are recorded in
the log history. A machine PA ∈ PP is the initiator of the
attack if the first message in the attack pattern was sent by
PA. The goal is to identify which machine in the history log
is PA.

A trivial example of an attack pattern is when an attacker
targets directly the victim’s machine without using a proxy; in
this case, the attacker identification becomes trivial. Obviously,
we are interested in more complex patterns than this one.

Example 3. Suppose that an attacker goes through a single
proxy machine to carry out an attack. The attack will cor-
respond to sending a particular message in order to retrieve
confidential information. This type of attack is common, and
can be carried out using backdoors on software installed on
the target machine, or by exploiting a buffer overflow bug.
This attack pattern has been modeled in Figure 3. This
pattern models the fact that an attacker PA sends a message
to a machine PT via a proxy PP . Then, the PT machine
responds to PA through the PP proxy. We can notice that a

time constraint has been put on the PP process. Indeed, the
standard proxy behavior is just to forward messages, so we
could add the constraint that the proxy does not keep messages
for more than 10 time steps, which correspond to 100 ms while
the time step is set to 10 ms.

V. ATTACK PATTERN IDENTIFICATION IN THE HISTORY
LOG

In order to identify the initiator of an attack, we define
a mapping between an attack pattern and a history log as
follows.

Definition 4. A mapping between an attack pattern P =
(PP ,MP , Tmin, Tmax) and a history log H = (PH ,MH , T)
is a function f : MP → MH such that for all m1,m2 ∈
MP :
• Tmin(m1,m2) ≤ T (f(m1), f(m2)) ≤ Tmax(m1,m2)
• X(m1) = X(m2)⇔ X(f(m1)) = X(f(m2)) where the

function X can be the function dom or cod.

If there is only one mapping f between an attack pattern P
and a history log H , then it is easy to deduce which machine
in the log history initiated the attack, and guarantee that no
other machine could have been the initiator.

The identification now consists in finding all the mappings
between an attack pattern and a history log, which is close
to the subgraph isomorphism problem known to be a NP-
Complete [14]. Thus, our problem is also NP-Complete.

Theorem 5. The problem of identifying a pattern in an Timed
MSC is NP-Complete.

Proof. The problem is NP because a resulting mapping can
be checked in polynomial time.

To prove completeness, we can reduce the k-clique problem
to the mapping problem. Let G = (V,A) be a graph where V
is a set of vertices and A ⊆ V ×V is a set of edges. Assuming
that V has an order, we build a history log H = (V,A, T)
such that T enumerates each message of A in lexicographical
order, i.e., a message (a, b) is before (c, d) if a < c or if a = c
and b < d. To search for a k-clique, we will build an attack
pattern (V ′, A′, Tmin, Tmax, PA) with k processes such that
(V ′, A′) is a k-clique graph and for all m1,m2 ∈ A′ such that
m1 < m2, we have Tmin = 1 and Tmax = +∞.

Although the subgraph isomorphism problem is NP-
Complete, when the subgraph is fixed, the problem becomes
polynomial. Ullmann described for the first time a procedure
to solve this problem in polynomial time when the subgraph
is fixed [12]. The algorithm was then improved several times
[3], [5], [13].

We have been inspired by these approaches to elaborate our
algorithm of a mapping between an attack pattern and a history
log.

VI. APPROACH

In this section, we propose an efficient mapping algorithm
between an attack pattern and a history log and a theoretical
analysis of its complexity.

We paid a particular attention to the data structure used in
order to have an efficient implementation. Thus, the history
log H is an array where the index of each cell corresponds
to the time step of a message. Therefore, a cell H[i] contains
the messages occurred at the time step i.

Algorithm 1 identifies all the mappings between an attack
pattern P and a history log H .

If some messages are already identified as malicious, the
algorithm can take a partial function that maps these messages
as an input to increase its efficiency.

Algorithm 1 Function match
Input: A log history H = (PH ,MH , T), a pattern P =
(PP ,MP , Tmin, Tmax), a map Pmap : PH → PP , and a
partial mapping function f :MP →MH .
Output: All possible mapping functions between P and
H .

1: p := null
2: tmin := −∞
3: tmax := +∞
4: for all m ∈MP not mapped in f do
5: tmpmin := −∞
6: tmpmax := +∞
7: for all m′ ∈MP already mapped in f do
8: tmpmin := max(tmpmin, T (f(m

′)) +
Tmin(m

′,m))
9: tmpmax := min(tmpmax, T (f(m

′)) +
Tmax(m

′,m))
10: end for
11: if tmpmax − tmpmin ≤ tmax − tmin then
12: tmin := tmpmin

13: tmax := tmpmax

14: p = m
15: end if
16: end for
17: if p = null then
18: return {f}
19: end if
20: for all t := tmin...tmax do
21: for all msg ∈ H[t] do
22: if Pmap[dom(msg)] then
23: if Pmap[dom(msg)] 6= dom(p) then
24: continue
25: end if
26: end if
27: if Pmap[cod(msg)] then
28: if Pmap[cod(msg)] 6= cod(p) then
29: continue
30: end if
31: end if
32: result := result ∪ match(H,P, Pmap ∪

{(dom(p, dom(msg)), (cod(p, cod(msg))}, f ∪
{(p,msg)})

33: end for
34: end for

The algorithm works in two phases. In the first phase (lines
4 to 16), the algorithm selects a message in the attack pattern
that minimizes the number of potential mapping in the log
history .

When a message in the attack pattern is found, the second
phase of the algorithm identifies a mapping between the
message of the attack pattern and a message of the log history
(lines 20 to 34). The two phases are executed recursively until
all the pattern messages are processed. Finally, the algorithm
returns a list of the occurrences of attacks that map the attack
pattern.

Complexity analysis. The complexity of the first phase is
O(|MP |2). The complexity of the second phase without the
recursive call is |H[tmin]|+ |H[tmin +1]|+ . . . + |H[tmax]|.
The latter is O(avg rate × max duration) in the worst
case, where avg rate is the average message rate in the
network and max duration is the maximum duration of the
attack pattern. Thus, each recursion in the algorithm has a
complexity of O(|MP |2+avg debit×max duration). The
number of recursions is in the O(|MH ||MP |) in the worst
case. We notice that the proposed algorithm is exponential
to the size of the attack pattern. In practice, this worst-case
analysis for the number of recursive calls is not very useful,
because the majority of messages are not compatible, so such a
combinatorial explosion will not appear. In practice, we do not
face a combinatory explosion since phase 1 of the algorithm
minimizes the subset of messages in which the mapping is
performed. Consequently, the log history does not impact the
complexity of the algorithm.

VII. BENCHMARK

In order to evaluate the effectiveness of our approach and the
scalability of the algorithm, we conducted an experimentation
of attack pattern matching. We considered several network
configurations depending on the given input data, which are
the following:
• n: Number of machines in the network
• avg rate: Average rate of the number of messages sent

per second per machine
• t total: The total time of the history log
• P : the attack pattern

Based on the input data, we randomly generate a history log
H , in which we incorporate an attack that matches pattern P .

Each configuration is executed 100 times, then we report
the average execution time. The implementation of Algorithm
1 was carried out in C++ and we performed the benchmarks
in a VirtualBox with 8 GB of RAM and i5-7500 processor.

The first attack pattern corresponds to an attack through two
proxies (Figure 3), in which A is the attacker, T is the target,
and P1 and P2 are the proxies.

We assume that the two messages entering and leaving the
target machine T were detected as malicious so we already
map these two messages. The obtained results are presented
in Table I.

A P1 P2 T

[0, 10]
[0, 10]

[0, 10]
[0, 10]

Fig. 3. Pattern of attack consisting in passing through one proxy.

In that table, the first column indicates the total number of
messages in the history log. The columns n, avr rate, t total
are the input data. The column Times indicates the average
of 100 execution times of the algorithm. The last column
indicates the success rate of the attacker identification. Each
row corresponds to the configuration of one experimentation.

Number of n avg rate t total T imes Successful
messages (msg/sec) (sec) (ms) Identification

6M 10K 10 60 13 99%
12M 10K 10 120 12 99%
18M 10K 10 180 12 100%
24M 10K 10 240 12 99%
6M 10K 10 60 13 99%

12M 10K 20 60 84 98%
18M 10K 30 60 260 89%
24M 10K 40 60 590 83%
6M 10K 10 60 13 99%

12M 20K 10 60 26 100%
18M 30K 10 60 41 99%
24M 40K 10 60 54 99%
600M 100K 100 60 93,000 91%

TABLE I
BENCHMARK FOR THE ATTACK PATTERN IN FIGURE 3.

We have several observations. The first one is that the
execution time does not depend on either the length of the
log history or the number of messages, but rather on the
average rate of message exchange. The second observation is
that the execution time grows linearly according to the number
of machines in the network.

Considering the average rate, the execution time follows a
polynomial function of order two. Finally, as a last observa-
tion, for a network of 100,000 machines, sending an average
of 100 messages, the execution of the algorithm is about one
minute.

We also notice that when the average rate increases while
the attack pattern is simple, the success of identification
decreases. However, the algorithm returns a subset of machines
that might be the attack initiators.

We performed a second benchmark considering a more
complex attack pattern (Figure 4). In this pattern, the attacker
starts by sending a malicious message to cause damage. This
first attack is carried out through two proxies, P1 and P2. Then,
the attacker uses the newly created vulnerability to obtain
critical data via the proxies P1 and P3.

A P1 P2 P2 T

[0, 10]
[0, 10]

[0, 10]
[0, 10]

[0, 10]
[0, 10]

Fig. 4. Pattern of attack consisting in passing through one proxy.

The results obtained are presented in Table II. We notice that
the resolution time is almost identical to the results in Table
I. However, the successful identification rate is much better.
Indeed, the more complex and precise the attack pattern is,
the fewer chances there are to wrongly identify the pattern.

Number of n avg rate t total Times Successful
messages (msg/sec) (sec) (ms) Identification

6M 10K 10 60 12 100%
12M 10K 10 120 12 100%
18M 10K 10 180 12 100%
24M 10K 10 240 12 100%
6M 10K 10 60 12 100%
12M 10K 20 60 84 100%
18M 10K 30 60 290 100%
24M 10K 40 60 640 100%
6M 10K 10 60 12 100%
12M 20K 10 60 26 100%
18M 30K 10 60 42 100%
24M 40K 10 60 56 100%

600M 100K 100 60 97,000 100%
TABLE II

BENCHMARK FOR THE ATTACK PATTERN IN FIGURE 4.

VIII. CONCLUSION

When a cyber-attack occurs in a network, the problem of
automatically assigning this attack without knowledge of the
used attack pattern is undecidable even if we assume that the
overall network traffic is recorded.

In this paper, we presented a specification of attack pat-
tern, which is a formal representation of a scenario used by
the attacker to execute an attack. We demonstrated that by
knowing the attack pattern used by the attacker, it becomes
possible to identify the initiator of an attack. We also showed
that the automated detection of attack patterns is realistic using
machine learning techniques and artificial intelligence.

In order to show the feasibility of this approach, we im-
plemented our algorithm and performed benchmarks on two
attack patterns. The results showed that our approach allowed
us to identify the initiator of an attack with a high success
rate.

The analysis of the complexity of our approach has shown
us two interesting things. First, the time used by our algorithm
does not depend on the duration of the communication record-
ings. Secondly, the resolution time seems to be polynomial
in practice. For example, the proposed algorithm was able to
assign an attack in a network of a hundred thousand machines
where each machine sends 100 message/sec in less than a
hundred seconds.

Three possible evolutions of our approach can be considered
as future work:

• Since some routers may not be cooperative and may not
disclose or record communications between machines,
one possible evolution is to add the ability to process
missing messages by proposing the best partial mapping.

• Be able to handle more complex attack patterns using
HMSC (Highlevel Message Sequence Charts). Indeed,
this formalism is used to describe a set of interaction
scenarios between remote sites. In addition, the use of
blocks, such as alternative and parallel blocks, could be
used to support the modelling of complex attack patterns.

• The attack scenarios may not be deterministic. The use
of probability in modelling could be used to manage this
case of non-determinism.

ACKNOWLEDGMENT

This work has been partly funded by Defence Canada grant
under the program Innovation for Defence Excellence and
Security (IDEaS), and by the Ministère de l’Économie et de
l’Innovation - Québec.

REFERENCES

[1] Steven Michael Bellovin, Marcus Leech, and Tom Taylor. Icmp
traceback messages. 2003.

[2] W Earl Boebert. A survey of challenges in attribution. In Proceedings
of a workshop on Deterring CyberAttacks, pages 41–54, 2010.

[3] Vincenzo Bonnici, Rosalba Giugno, Alfredo Pulvirenti, Dennis Shasha,
and Alfredo Ferro. A subgraph isomorphism algorithm and its applica-
tion to biochemical data. BMC bioinformatics, 14(7):S13, 2013.

[4] JL Camp. Digital identity. IEEE Technology and society Magazine,
23(3):34–41, 2004.

[5] Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento.
A (sub) graph isomorphism algorithm for matching large graphs. IEEE
transactions on pattern analysis and machine intelligence, 26(10):1367–
1372, 2004.

[6] Jeffrey Hunker, Bob Hutchinson, and Jonathan Margulies. Role and
challenges for sufficient cyber-attack attribution. Institute for Informa-
tion Infrastructure Protection, pages 5–10, 2008.

[7] Vikas Jayaswal, William Yurcik, and David Doss. Internet hack
back: Counter attacks as self-defense or vigilantism? In IEEE 2002
International Symposium on Technology and Society (ISTAS’02). Social
Implications of Information and Communication Technology. Proceed-
ings (Cat. No. 02CH37293), pages 380–386. IEEE, 2002.

[8] Jamal Raiyn et al. A survey of cyber attack detection strategies.
International Journal of Security and Its Applications, 8(1):247–256,
2014.

[9] Paulo Shakarian, Gerardo I Simari, Geoffrey Moores, and Simon Par-
sons. Cyber attribution: An argumentation-based approach. In Cyber
Warfare, pages 151–171. Springer, 2015.

[10] Paulo Shakarian, Gerardo I Simari, Geoffrey Moores, Simon Par-
sons, and Marcelo A Falappa. An argumentation-based framework
to address the attribution problem in cyber-warfare. arXiv preprint
arXiv:1404.6699, 2014.

[11] Alex C Snoeren, Craig Partridge, Luis A Sanchez, Christine E Jones,
Fabrice Tchakountio, Stephen T Kent, and W Timothy Strayer. Hash-
based ip traceback. In ACM SIGCOMM Computer Communication
Review, volume 31, pages 3–14. ACM, 2001.

[12] Julian R Ullmann. An algorithm for subgraph isomorphism. Journal of
the ACM (JACM), 23(1):31–42, 1976.

[13] Julian R Ullmann. Bit-vector algorithms for binary constraint satisfac-
tion and subgraph isomorphism. Journal of Experimental Algorithmics
(JEA), 15:1–6, 2010.

[14] Ingo Wegener. Complexity theory: exploring the limits of efficient
algorithms. Springer Science & Business Media, 2005.

[15] David A Wheeler and Gregory N Larsen. Techniques for cyber attack
attribution. Technical report, INSTITUTE FOR DEFENSE ANALYSES
ALEXANDRIA VA, 2003.

