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Abstract. The paper focuses on the problems of passive and active FSM infer-

ence as well as checking sequence generation. We consider the setting where an 

FSM cannot be reset so that its inference is constrained to a single trace either 

given a priori in passive inference scenario or to be constructed in active infer-

ence scenario or aiming at obtaining checking sequence for a given FSM. In each 

of the last two cases, the expected result is a trace representing a checking se-

quence for an inferred machine, if it was not given. We demonstrate that this can 

be achieved by a repetitive use of a procedure that infers an FSM from a given 

trace (identifying a minimal machine consistent with a trace) avoiding equivalent 

conjectures. We thus show that FSM inference and checking sequence construc-

tion can be seen as two sides of the same coin. Following an existing approach 

of constructing conjectures by SAT solving, we elaborate first such a procedure 

and then based on it the methods for obtaining checking sequence for a given 

FSM and inferring a machine from a black box. The novelty of our approach is 

that it does not use any state identification facilities. We only assume that we 

know initially the input set and a bound on the number of states of the machine. 

Experiments with a prototype implementation of the developed approach using 

as a backend an existing SAT solver indicate that it scales for FSMs with up to a 

dozen of states and requires relatively short sequences to identify the machine. 

Keywords: FSM testing, machine inference, machine identification, active 

learning, checking experiments, checking sequences. 

1 Introduction 

Model-based testing from finite state models of systems, when it is only possible to 

interact with the system through its input/output interfaces, relies on traversing transi-

tions of the model and being able to check that states reached after transitions in the 

system are consistent with those expected from the model. At the end of the test, the 

goal is to be able to guarantee that the system under test behaves as expected in the 

model. So the test must be built as a checking sequence of inputs that can uniquely 

identify (up to equivalence) a given model machine. 
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Computing a checking sequence from a finite state model dates back to the very 

early history of automata in computer science, starting with the work of Moore [15] 

and many approaches have been proposed to generate checking sequences for various 

types of models under various assumptions for the machine w.r.t determinism, com-

pleteness, and the existence of specific sequences for a machine such as distinguishing 

sequences [10], signatures [21], state identifiers [17] etc. 

More recently, at the turn of the century, model-based approaches have led to an 

interest in inference techniques. Instead of checking whether a system behaves as spec-

ified by a model, it works the other way round: we try to build a model, called a con-

jecture that will predict as accurately as possible the behavior of a system. This can be 

based on a corpus of given observed behaviors of the system (passive inference), or on 

the ability to submit test sequences (active inference). One key driver for such ap-

proaches is that experience in industrial context have shown that building and main-

taining accurate and up-to-date models was complicated, and needed specific expertise. 

Being able to derive models automatically relieves the burden of creating and main-

taining them. 

Building a checking sequence can be seen as a top-down approach (from model to 

implementation) and inference as bottom-up approach (from implementation to conjec-

tured model). The two are in fact closely linked: in active inference, if a sequence is 

built that uniquely identifies a machine, then this sequence is a checking sequence for 

this machine. The main difference is in the starting point: for checking sequence gen-

eration, we assume we know the (specification) machine to be identified. For inference, 

the machine is unknown. 

In this paper, we propose an iterative approach that alternates passive inference with 

construction of checking experiments.  Initially, an input sequence will be too short to 

uniquely identify a machine. But one can exhibit one of many possible conjectures that 

would match the observed input/output sequence (the running trace). So the idea is to 

build a checking experiment that will distinguish among conjectures, and which is ap-

pended to the current trace. Following this idea, the set of potential conjectures is re-

duced, and the process is iterated until we get to a point where the set is reduced to a 

singleton, at which point the input projection of the observed trace is a checking se-

quence. 

Interestingly, this theoretical framework had already been envisioned by J. Kella, in 

one of the early papers on passive inference [14]. Let us quote the end of his introduc-

tion (our comments in brackets): “When the machine has no distinguishing sequences 

the reducing technique can help in minimizing the length of the checking experiment 

by iterative construction of the experiment. An initial sequence is applied to the ma-

chine and the resulting input-output sequence is reduced [by state merging]; the result 

will indicate a family of machines responding in the same way. An additional sequence 

which eliminates nondesired machines is then applied and another reduction is per-

formed; by repeated application of the basic iteration the sequence will reduce uniquely 

to the checked machine [up to the initial state]. This method of checking experiment 

construction was tried for some examples but there is no proof yet to whether it is more 

efficient than other methods [10] and whether it will converge in all cases.” 
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Our approach shows that is indeed possible to uniquely identify a non-resettable de-

terministic complete machine, while building a checking sequence for it, with no a pri-

ori knowledge apart from a bound on the number of states, and the input set of the 

machine. Contrary to previous work [9], it does not require a characterization set or 

another assumption on sequences to distinguish states in the machine. 

Section 2 will provide precise definitions for our formal framework, while Section 

3 will define the inference problems and checking sequence generation in our context, 

i.e. from a single trace for a non-resettable machine, in relation with the state of the art. 

Section 4 shows how passive inference, i.e. the computation of a conjecture from a 

single trace can be encoded into a Boolean formula, so that a SAT solver can be used 

to efficiently get a conjecture. Sections 5 and 6 present our iterative approaches, show-

ing the two sides of the coin: checking sequence generation and active inference. Sec-

tion 7 presents experiments that show that the algorithms can work with middle-sized 

automata. Section 8 concludes. 

2 Definitions  

A Finite State Machine (FSM) M is a 5-tuple (S, s0, I, O, T), where S is a finite set of 

states with an initial state s0; I and O are finite non-empty disjoint sets of inputs and 

outputs, respectively; T is a transition relation T  S  I  O  S, (s, a, o, s)  T is a 

transition. When we need to refer to the machine M in a state s  S, we write M/s. 

M is completely specified (complete) if for each tuple (s, a)  S  I there exists tran-

sition (s, x, o, s)  T. It is deterministic if for each (s, a)  S  I there exists at most 

one transition (s, a, o, s)  T, otherwise it is nondeterministic. We consider in this 

paper only deterministic FSMs.  

An execution of M/s is a sequence of transitions forming a path from s in the state 

transition diagram of M. The machine M is initially connected, if for any state s  S 

there exists an execution from s0 to s. M is strongly connected, if the state transition 

diagram of M is a strongly connected graph. 

A trace of M/s is a string of input-output pairs which label an execution from s. Let 

Tr(s) denote the set of all traces of M/s and TrM denote the set of traces of M/s0. For 

trace   Tr(s), we use s-after- to denote the state M reached after the execution of 

, for an empty trace  s-after- = s. When s is the initial state then we write M-after-

 instead of M/s0-after-.  

Let also out(s, ) be an output sequence produced by the input sequence   I* in 

M/s. For input sequence  applied in state s, we let trs() denote the trace with the input 

projection ; we will omit the subscript when no confusion occurs. 

Given an input sequence , states s, s  S are equivalent w.r.t. , if out(s, ) = 

out(s, ), denoted s ≅ sthey are distinguishable by , if out(s, )  out(s, ), de-

noted s ≇ s or simply s ≇ s. A distinguishing sequence of M is an input sequence  

for which the output sequence produced by M in response to  identifies the state of M: 

for all s, s  S, out(s, )  out(s, ). A characterization set of M is a set input sequences 

such that every s, s  S, there exists a sequence  in the set such that out(s, )  out(s, 
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). States s and s are equivalent if they are equivalent w.r.t. all input sequences, thus 

Tr(s) = Tr(s), denoted s ≅ s. The equivalence and distinguishability relations between 

FSMs is similarly defined. Two FSMs are equivalent if their initial states are equivalent. 

A complete FSM is minimal, if it has no equivalent states.  

Given two FSMs M = (S, s0, I, O, T) and M′ = (S′, s′0, I, O, T′), their product M  M′ 

is an FSM (P, p0, I, O, H), where p0 = (s0, s'0) is such that P and H are the smallest sets 

satisfying the following rule: If (s, s')  P, (s, x, o, t)  T, (s', x, o', t')  T', and o = o', 

then (t, t')  P and ((s, s'), x, o, (t, t')  H.  

Lemma. If M and M′ are complete machines then they are equivalent iff the product 

M  M′ is complete in the input set I. 

Two complete FSMs M = (S, s0, I, O, T) and M′ = (S′, s′0, I, O, T′) are called isomor-

phic if there exists a bijection f: S → S′ such that f(s0) = s′0 and for all a  I, o  O, and 

s  S, f(s-after-ao) = f(s)-after-ao. Isomorphic FSMs are equivalent, but the converse 

does not necessarily hold. Note that we do not require equivalent machines to be mini-

mal. 

Given a trace   (IO)* of length ||, let Pref() be the set of all prefixes of . We 

define a linear FSMW = (X, x0, I, D), such that |X| = || + 1, and there exists a bijection 

f: X  Pref(), such that  f(x0) = , (xi, ao, xi+1)  D iff f(xi)ao = f(xi+1) for all i = 0, 

…, || - 1, in other words, TrW = Pref(). We call it an -machine W.  

While the set of traces of the -machine is Pref(), there are many FSMs which 

have the trace  among other traces. We restrict our attention to the class of FSMs with 

at most n states and alphabets I and O, denoted ℑ(n, I, O). An FSM C = (S, s0, I, O, T), 

C  ℑ(n, I, O) is called an -conjecture, if   TrC. Let ℑ(n, I, O) be the set of all -

conjectures in the set ℑ(n, I, O). Clearly, the -machine is also an -conjecture, if || 

< n. 

The states of the -machine W = (X, x0, I, D) and an -conjecture C = (S, s0, I, O, 

T), C  ℑ(n, I, O) are closely related to each other. A state of the -machine reached 

after any prefix of the trace  corresponds to a unique state of the -conjecture that is 

reached after that prefix. Formally, there exists a mapping : X  S, such that (x) = 

s0-after-f(x), the state reached by C when the trace f(x)  Pref() is executed. The map-

ping  induces a partition C on the set X such that x and x belong to the same block of 

the partition C, denoted x =C
 x, iff (x) = (x).  

Given an -conjecture C with the partition C, let D be an -conjecture with the 

partition D, such that   Pref(), we say that the partition C is an expansion of the 

partition D, if its projection to  coincides with the partition D; viz D = {P  X| P 

 C} where X = {xi  X | i  ||}. 

An input sequence   I*is a checking sequence for a complete minimal FSM M 

with n states M if for each FSM N  ℑ(n, I, O), there is a state s in M such that N ≅ 

M/s, it holds that N ≅ M/s. The trace trs(), where  is a checking sequence, is called 

a checking trace of M.  In this definition, we allow uncertainty in the initial state of M 

since it may have other states which converge with the initial state on a checking trace 

(an example of such an FSM can be found in Section 5).  
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Checking sequence is a special type of checking experiments for FSM, it is usually 

considered for FSM based testing when a reset operation in FSM implementations is 

unavailable or formidably costly to execute. 

3 Problem Statement and Related Work 

We consider the following closely related problems, passive and active FSM infer-

ence as well as checking sequence construction. Significantly, we restrict our setting to 

the case where a FSM may not be reset, so that the definitions we give here refer to a 

single trace. Actually, if a FSM can be reliably reset, the reset sequences can be in-

cluded in the trace, so the definitions below can cover the general case. We state the 

problems using the definitions given above. 

Passive inference is a classical problem whereby given a trace  we need to build an 

-conjecture with a minimal number of states [14][6][2]. 

Active inference, aka active automata learning, is another problem addressed in the 

literature [5]. Restated in our FSM context, given a black box, which behaves as an 

unknown minimal complete strongly connected FSM with the input alphabet I and the 

number of states equal to n, infer the FSM, i.e. build an -conjecture equivalent to the 

FSM and its checking trace . 

The checking sequence problem differs from active inference in assuming that the 

expected behavior of a black box with at most n states submitted for testing is given as 

a strongly connected FSM M called a specification machine and we need to determine 

its checking trace . The relation to passive inference is direct, once  is constructed, 

any -conjecture must be equivalent to M.  

In this section, we briefly discuss the existing approaches addressing these problems 

which do not rely on the existence of a reset operation. 

3.1 Passive Inference from a Single Trace 

Passive FSM inference problem is stated by Kella in 1971 [14] as sequence machine 

identification and later as system/automaton identification problem by Gold [6]. The 

problem has been studied ever since. The problem is known to be computationally very 

hard, nevertheless, numerous proposals have been made, mainly on developing state 

merging techniques to transform an -machine into an -conjecture as small as possi-

ble, see, e.g., [14] [27] etc. The most recent approaches are based on satisfiability (SAT) 

solvers [1][11]. 

In Section 4, we propose an approach to build an -conjecture within a bound on the 

number of states using a SAT solver that avoids obtaining conjectures which were al-

ready considered. 

3.2 Checking Sequence Problem 

The problem of checking sequence generation from an FSM has a long history start-

ing from work of Moore [15] and Hennie [10]. Almost all existing methods require a 
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machine be complete and minimal. Moreover, the vast majority of the proposed meth-

ods only apply to FSMs which have distinguishing sequences or distinguishing sets, 

see, e.g. [4][7][12][22][23][26]. Not all FSMs possess these sequences and their con-

struction is a non-trivial problem. Only few methods can generate checking sequence 

from complete and minimal FSM which has just characterization set and no other dis-

tinguishing sets, see [10][19][18]. Moreover, they cannot be called efficient, since the 

size of a checking sequence generated by using characterization set grows exponen-

tially with the length and number of sequences in characterization set [25].  

The problem of checking sequence generation without even determining distinguish-

ing sequences or finding an “optimal” or any other characterization set remains open, 

to the best our knowledge. In Section 5 we propose an approach that does not assume 

any distinguishing or characterization set computation. 

3.3 Active Inference without Reset 

Active inference has most often been addressed in the context of learning from sam-

ples and queries [5][8], so that the problem of dealing with a single trace has not re-

ceived a lot of attention. An early attempt was proposed by [20], as an adaptation to 

Angluin’s L* algorithm. It assumes that an external oracle can be queried to provide a 

counterexample (hence an input sequence to distinguish the black box and the conjec-

ture), and starts with the knowledge of a homing sequence. More recently an approach 

was proposed that does not require an external oracle, but still assumes knowledge of a 

characterization set [9]. 

However, the assumptions about the existence of an external oracle, knowledge of 

homing or state characterizing sequences, such as distinguishing sequences and char-

acterization sets, are not easy to justify in practice, therefore the problem of active in-

ference of FSMs with neither reset operation nor strong assumptions about a given back 

box remains open. In Section 6 we propose an approach that does not require such 

assumptions. 

4 Passive Inference with SAT solving 

Since an -machine is itself an -conjecture, the minimization problem boils down 

to merging states of the -machine without introducing traces that would contradict the 

trace . Therefore by encoding a trace into a Boolean formula, and expressing state 

merging possibilities in that formula, we may use a SAT solver to determine acceptable 

mergers. 

4.1 Problem encoding 

Here we present a procedure for encoding a trace into a Boolean formula, and at the 

same time express a constraint on the number of states. 

Let W = (X, x0, I, D) be an -machine. To find an -conjecture with at most n states 

amounts to determine a partition  on the set of states X such that the number of blocks 
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does not exceed n.  This problem can be cast as a constraint satisfaction problem (CSP) 

[3]. Let X be {x0, …, x||}, so each integer variable represents a state of the -machine. 

Since the -machine is deterministic, the state variables satisfy the following con-

straint: 

xi, xj  X :  

if xi ≇ xj then xi  xj and 

if a  I s.t. out(xi, a) = out(xj, a) = o then xi = xj ⇒ xi-after-ao = xj-after-ao (1) 

If the number of states in an -conjecture to be constructed should be at most n then 

each state variable xi  {0, …, n - 1}. Then an assignment of values to variables in {x0, 

…, x||} such that the formula (1) is satisfied defines a mapping : X  S, where S is 

the set of states of an -conjecture, i.e., the mapping  defines a partition of X into n 

blocks. 

These formulas can be translated to SAT using unary coding for each integer variable 

x  X, such that x is represented by n Boolean variables vx,0, …, vx,n-1. For each x  X, 

we have the clause: 

vx,0 …  vx,n-1      (2) 

These clauses mean that each state of the -machine W should be in at least one 

block. 

For each state x  X and all i, j  {0, …, n - 1} such that i  j, we have the clauses: 

 vx,i   vx,j    (3)    

The clauses mean that each state of the -machine W should be in at most one block. 

Since a sought-after -conjecture must be deterministic, the formula (1) is encoded 

into the following clauses. First, distinguishable states of W should be in different 

blocks, so for every x, y  X such that x ≇ y and all i  {0, …, n - 1} 

vx,i  vy,i    (4)    

Second, states of W equivalent w.r.t. to some input if placed in the same block must 

have their successors also in one block. Hence for all xi, xj X such that out(xi, a) = 

out(xj, a) = o and all i, j  {0, …, n - 1} we have a formula which can directly be 

translated into clauses 

(vx,i  vx,i) ⇒ (v(x-after-ao),i ⇒ v(x-after-ao),i) (5) 

To simplify learning that x = y for some x, y X we further rewrite the clauses (4) 

and (5) using auxiliary variables ex,y modeling the fact that x = y. For every x, y X 

such that x ≇ y we have 

ex,y    (6) 

For all x, y X such that out(x, a) = out(x, a) = o, we have 

ex,y ⇒ ex-after-ao,y-after-ao     (7) 

The relation between auxiliary state variables is expressed in the following clauses. 

For every x, y X and all i  {0, …, n - 1} 

ex,y  vx,i ⇒ vy,i     (8) 

ex,y  vx,i ⇒ vy,i     (9) 

The resulting Boolean formula is the conjunction of clauses (2), (3), (6), (7), (8) and 

(9). To check its satisfiability one can use any of the existing solvers. If a solution exists 



8 

then we have an -conjecture with n or fewer states. In the context of passive inference, 

we are usually interested in finding an -conjecture as small as possible. This requires 

several trials with varying values of n. 

4.2 Passive inference of different (new) conjectures 

In the context of active inference as well as checking sequence construction we aim 

at obtaining a single -conjecture while avoiding constructing isomorphic conjectures. 

A key building block will be provided by the following procedure to infer a conjecture 

that differs from already considered conjectures. We identify isomorphic conjectures 

by their common partition, hence we add as a constraint that we look for an -conjec-

ture that does not expand a set of “forbidden” partitions. If such -conjectures are found 

they will be used in Sections 5 and 6 to augment the trace  by adding suffixes that 

eliminate distinguishable conjectures until only one remains. 

 

Algorithm 1. Infer_conjecture(, n, ) 

Input: A trace , an integer n, and a set of partitions  

Output: An -conjecture with at most n states such that its partition does not expand 

any partition in , or False. 

1. formula = conjunction of the clauses (2), (3), (6), (7), (8) and (9) 

2. for all    do 

3.  clause = False 

4.  for all x, ysuch that x = y do 

5.  clause = clause  ex,y 

6.  end for  

7.  formula = formula  clause  

8. end for  

9. return call-solver(formula)  

5 Checking Sequence Construction 

The idea of the proposed method for checking sequence (trace) generation is to find 

an FSM that reacts as the given specification FSM to a current input sequence using 

passive inference and eliminate it by extending the sequence with a suffix distinguish-

ing the two machines or forbidding the passive inference from further regeneration if 

they cannot be distinguished any further. This process iterates until no more conjectures 

distinguishable from the given FSM can be found. The procedure is implemented in 

Algorithm 2. 

 

Algorithm 2. Generating checking trace  

Input: A complete strongly-connected FSM M with n states 

Output: A checking trace  

1.  := 
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2.  :=  

3. while an -conjecture C is returned by Infer_conjecture(, n, ) do 

4.   if C-after- M-after- is complete then  

5.   :=   {C}  

6.   else 

 Determine an input sequence a such that  is a shortest transfer se-

quence from the state C-after- to a state with the undefined input a 

in C-after- M-after-

8.   := tr(a), where tr(a) is the trace of M-after- 

9.   end if 

10. end while 

11. return  

Algorithm 2 calls Infer_conjecture(, n, ), which in turn calls a SAT solver con-

straining it to avoid solutions of already considered conjectures. 

Note that the Boolean formula used by the SAT solver can be built incrementally by 

saving a current formula and adding only new clauses each time a trace  or a set of 

partitions  is augmented. 

 

Theorem 1. Given an FSM M with n states, Algorithm 2 returns a checking trace . 

Sketch of the proof.  When Algorithm 2 terminates the resulting trace  is indeed a 

checking one, since by the post-condition of Infer_conjecture no conjecture exists that 

is distinguishable from the given FSM M, after having executed . Note that all com-

plete conjectures equivalent to M are excluded because as soon as one is found (includ-

ing possibly M itself), according to the Lemma, its partition is added to . Algorithm 

2 always terminates, because the number of all possible conjectures with the fixed input 

alphabet within a given bound on the number of states n is finite. 

 

Example. Consider the FSM in Fig.1, it has no distinguishing sequence, its character-

ization set is {a, b}.    

 

Fig.1. The FSM M  

This example is used in [18], where a method for checking sequence generation from 

a minimal FSM without distinguishing sequence is proposed. Using this example the 

authors of [18] compare their method with those of [10][19] and report that the length 

of checking sequence obtained by their method is 120, while that of [10] is 171 and 248 

of [19].  

0 1 2
3 b/0 

a/0 

b/1 
a/0 

b/0 
a/1 
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Algorithm 1 implemented in a prototype tool presented in Section 6 returns the 

checking sequence  = a0a1a0a1b0b1b0a0b0b1a0a1b0a0a1 of length 15. Fig. 2 shows 

intermediate complete -conjectures obtained executing Algorithm 1. Notice that the 

last but one conjecture is actually the FSM M, though, the same trace is also accepted 

by another conjecture, which is eliminated using the suffix b0a0a1.  

 

Fig. 2. The -conjectures generated by Algorithm 1 along with their versions of ; suffixes in 

bold show how  grows. 

Note that the algorithm does not require the FSM to be minimal, moreover, it can be 

adapted to accept even a partial FSM. We are not aware of any method for checking 

sequence construction for FSMs which are partially defined and have compatible states, 

i.e., machines without characterization set. The only existing method which deals with 

such machines is [17], but it relies on the usage of the reset operation, as opposed to the 

approach proposed here. 

6 Active Inference Approach 

The iterative approach of Algorithm 2, which relied on computing a checking exper-

iment for an -conjecture that was consistent with the current prefix trace can be adapted 
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to active inference. The trick is to find a checking experiment not between the reference 

FSM M and the -conjecture, but between two possible -conjectures and retain the one 

that is consistent with the observations on the black box. 

Given a black box BB, which behaves as an unknown minimal complete strongly 

connected FSM with the input alphabet I and a number of states equal to n, Algorithm 3 

infers the FSM and constructs its checking trace. 

Algorithm 3. Inferring BB and determining its checking trace  

Input A black box BB, input set I and integer n 

Output A minimal complete -conjecture with n states and a checking trace  

1:  := 

2:  :=  

3: C := Infer_conjecture(, n, ) 

4: while an -conjecture D is returned by Infer_conjecture(, n, ) do  

5:  if D/D-after- C/C-after- is complete in the input set I then  

6:     :=   {D}  

7:  else 

8:  Determine an input sequence a such that  is a shortest transfer sequence from 

the state C-after- to a state with the undefined input a in D/D-after- C/C-

after- 

9:  := tr(a), where tr(a) is the trace obtained by applying a to BB 

10:  if TrC then  

11:      C := Infer_conjecture(, n, ) 

12:   end if 

13:  end if 

14: end while 

15: return C and  

Example. Consider that the FSM M in Fig.1 is a BB. Six intermediate complete -

conjectures shown in Fig. 3 are obtained executing Algorithm 3. The last two conjectures 

both accept  = a0a1a0b0b1b0b1a0a1b0a0a1a0a1. Both end up in state 2 from which 

they cannot be distinguished. The algorithm returns  as a checking trace and the last 

but one conjecture which is isomorphic to FSM M/2. The last conjecture is isomorphic 

to FSM M/0. Indeed, this trace is accepted by M in two states, 0 and 2. 
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Fig. 3. The -conjectures generated by Algorithm 3 along with their versions of ;  

suffixes in bold show how  grows.  

Theorem 2. If a black box behaves as a minimal complete strongly connected FSM 

with the input alphabet I and the number of states equal to n, Algorithm 3 infers it and 

constructs a checking sequence and trace for it.  

Sketch of the proof. Algorithm 3 follows the steps of Algorithm 2, just replacing the 

FSM M by a current conjecture. This does not influence its termination since it only 

occurs when no more distinguishable conjecture can be found. And at some point, be-

cause the black box behaves as an FSM with n states, it will be returned by Infer_con-

jecture, so that the remaining conjecture is equivalent to the FSM of the back box ini-

tialized in some state. The resulting trace accepted by that state is a checking one, as in 

Theorem 1.  

The expected complexity of the proposed approach could be estimated by viewing 

it as a mutation-based technique which kills mutants. In our approach at each iteration 

only a mutant surviving a current trace can be generated and then killed, drastically 

reducing the complexity of mutation-based techniques. A naive worst-case estimation 

based on number of (potential) mutants would be thus grossly overestimated. This ex-

plains why we provide in the next section experimental results on the observed com-

plexity with random machines.  
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7 Experiments 

The prototype was developed on C++ depending only on a SAT Solver Cryp-

tominisat [24], as a backend. All the experiments were performed on a virtual machine 

(VirtualBox) with 8 GiB of RAM and one CPU used. The computer has the processor 

7-3770 and 16 GiB of RAM. 

Table 1 presents experimental results on randomly generated FSMs. The numbers 

of inputs as well as outputs are fixed to two, while the number of state is varied. For 

each state number, 101 complete strongly connected machines are generated; they are 

not necessarily minimal, since the approach does not require any state distinguishabil-

ity. Each generated machine playing role of a specification FSM is used to construct 

checking sequence, and acting as a black box system is used for inference. Median 

values are collected for the length of resulting checking sequences ||, the number of 

times the solver is called (#solver), and execution time in seconds.   

 

n 
RANDOM FSMs 

Checking  Inferring  

|| #solver time || #solver time 

1 2 3 0.01 2 3 0.01 

2 7 8 0.01 7 9 0.01 

3 17 14 0.01 18 18 0.01 

4 26 20 0.01 30 24 0.01 

5 37 26 0.01 43 32 0.02 

6 47 32 0.03 57 39 0.05 

7 63 39 0.07 69 45 0.13 

8 76 44 0.17 83 54 0.32 

9 100 53 0.59 107 72 2.4 

10 118 58 1.7 119 70 9.0 

11 146 69 18.5 146 83 161 

Table 1. Experimental results with randomly generated FSMs with two inputs and outputs. 

The prototype scales for up to a dozen of states. This matches the state-of-the-art, 

we quote “For the set of problems studied, the most efficient algorithms described in 

this paper find the exact solution in very little time in all problems that have solutions 

up to 11–12 states, and become progressively less effective as the number of states 

increases.” [16].  

To assess the performance of the prototype to various numbers of inputs and out-

puts, another series of experiments reported in Table 2 were performed for machines 

with five states. Our experiments by varying their numbers separately show, unsurpris-

ingly, that increasing number of inputs or outputs have opposite effects on the effec-

tiveness, the more inputs the more complex the solutions (the search space is larger) 

but the more outputs the easier the solutions (more outputs increase distinguishability). 

In addition, we performed another series of experiments using randomly generated 

lock machines (Table 3). A lock FSM (aka Moore lock) with n states has a unique 
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“unlocking” input sequence of length n which executes the “remotest” transition, the 

transitions not covered by this sequence all lead to the initial state resetting the lock. 

We consider lock machines as ultimate test for active inference and checking sequence 

generation methods. As before for each number of states we generate 101 random locks 

with two inputs and two outputs and collect the same parameters as above. Clearly, for 

a fixed number of states, locks differ only in labelling of unlocking sequences, which 

effects the performance of the prototype, since it chooses inputs completing and distin-

guishing conjectures following the lexicographical order. 

#inputs 

= 

#outputs 

RANDOM FSMs 

Checking  Inferring  

|| #solver time || #solver time 

2 37 26 0.01 43 32 0.02 

3 51 40 0.03 57 47 0.05 

4 68 53 0.04 70 58 0.09 

5 74 62 0.05 81 71 0.12 

6 88 73 0.07 95 85 0.2 

7 101 83 0.09 109 99 0.3 

8 113 95 0.12 121 111 0.38 

9 121 102 0.12 127 122 0.5 

10 138 114 0.18 145 136 0.72 

20 257 212 0.63 276 261 3.2 

30 377 312 1.3 425 391 10 

40 525 412 2.5 517 571 22 

Table 2. Experimental results with randomly generated arbitrary FSMs with five states. 

 

n 

RANDOM LOCKs 

Checking  Inferring  

|| #solver time || #solver time 

1 2 3 0.01 2 3 0.01 

2 7 8 0.01 7 7 0.01 

3 22 16 0.01 23 22 0.01 

4 57 28 0.04 58 61 0.05 

5 110 40 0.41 127 164 0.79 

6 255 58 7.8 269 514 21 

7 488 456 870 456 2202 970 

Table 3. Experimental results with randomly generated lock FSMs. 

It is interesting to notice that active inference and checking sequence construction 

have comparable lengths of the resulting input sequences. After all, in both cases a 

checking sequence for the same machine is generated.  

We observe that the length of resulting sequences grows polynomially, the number 

of times the solver is called linearly and time exponentially with the number of states. 
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8 Conclusions 

We have presented a method that can infer a model of a non-resettable black box 

FSM for which we only know an upper bound n on the number of states. It produces 

the model along with the input sequence that was used for inferring it. The algorithm 

terminates on a final model that is equivalent to the black-box FSM up to initialization, 

and since it identifies a unique machine such that the input sequence is a checking se-

quence for this FSM. 

The main benefit of this approach is that it only requires a bound on the number of 

states, no other assumption is needed, and the system does not have to be reset. This 

implies that it may have a wide spectrum of applications. The performance of active 

inference methods is usually assessed through the number of interactions with a system 

that are needed to infer it. Experiments have shown that the length of the input sequence 

implied by our approach is quite good. Another issue comes from the internal compu-

tations needed by the inference algorithm to build the model of the system. The method 

relies on a SAT solver to propose conjecture FSMs that are consistent with an observed 

trace. Unfortunately, this induces an exponential growth in the number of states, and 

this has been the limiting factor in our experiments. However, being able to infer state 

machines of up to a dozen states is in itself interesting for a large range of applications 

(many systems have relatively small state-space for the control part of their computa-

tions). 

The approach seems promising, and can be improved in several directions. First, we 

have encoded the constraints for passive inference in a straightforward way, which puts 

a high burden on the constraint solver. It should be possible to encode the problem with 

more elements from the trace and FSM-structure to help the solver, with some guid-

ance. Another direction we are investigating is to extract more information from previ-

ous conjectures and observations so as to reduce the number of calls to the solver to a 

minimum. In many cases, the calls to the solver can be avoided because it is possible 

to derive further checking experiments from the structure of the past conjecture(s). In-

stead of calling the solver to identify a new conjecture, it could be possible to refine the 

current conjecture. 
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