
Conformance Testing and Inference

of Embedded Components

Alexandre Petrenko, Florent Avellaneda

CRIM, Canada
{Alexandre.Petrenko, Florent.Avellaneda}@crim.ca

Abstract. The problems of active inference (learning) and conformance testing of a system

modelled by an automaton have actively been studied for decades, however, much less atten-

tion has been paid to modular systems, modelled by communicating automata. In this paper,

we consider a system of two communicating FSMs, one machine represents an embedded

component and another the remaining part of the system, the context. Assuming that the con-

text FSM is known, we want to learn the embedded FSM without directly interacting with it.

This problem can be viewed as a generalization of the classical automata inference in isola-

tion, i.e., it is the grey box learning problem. The proposed approach to solve this problem

relies on a SAT-solving method for FSM inference from traces. It does not depend on the

composition topology and allows at the same time to solve a related problem of conformance

testing in context. The latter is to test whether an embedded implementation FSM composed

with the given context is equivalent to the embedded specification FSM also composed with

the context. The novelty of the conformance testing method is that it directly generates a com-

plete test suite for the embedded machine and avoids using nondeterministic approximations

with their tests, eliminating thus several sources of test redundancy inherent in the existing

methods.

Keywords: active inference, FSM learning, conformance testing, component-based sys-

tems, embedded testing, testing in context, SAT solving.

1 Introduction

Componentization is an important engineering principle. Top-down design approaches

brake down large systems into smaller parts, components, and bottom-up approaches com-

pose existing components into larger systems. While practitioners are mostly using ad hoc

techniques, model-based software engineering is investigating formal approaches which

can offer automation to various phases of modular system development, including testing

and using legacy components and components of the shelf, COTS.

The existing model-based testing approaches focus mostly on a holistic view of a mod-

ular system, based on a single state-oriented model, see, e.g., [7]. Conformance tests are

then generated from a state machine, which models either a component in isolation or a

2

whole system as observed on external interfaces [4, 5, 7]. On the other hand, when a system

is built using existing components, testing efforts should be focused only on new compo-

nents [17]. This motivates research in conformance testing in context aka embedded testing,

which aims to check whether an embedded implementation FSM composed with the given

context is equivalent to the embedded specification FSM also composed with the context.

All the known methods for complete tests generation for testing in context first construct

from the context and embedded machine an embedded equivalent or the largest solution to

the appropriate FSM equation, which represents the behavior of the embedded machine as

can be controlled and observed via context [2, 11, 12, 14]. The resulting partial machine is

a nondeterministic approximation of the embedded deterministic machine, it is then used to

derive complete internal tests, which are finally translated into external ones executed on

external interfaces of a modular system.

Conformance testing is closely related to active inference, aka query learning, as already

been understood, see, e.g., [10], for the case when a system is considered “as a whole”, i.e.,

modelled as an FSM.

Model inference helps in dealing with legacy components and COTS. Once a model is

reengineered it can be used to perform verification with model checkers, regression and

integration testing or redesign. Automata inference is an important topic addressed in many

works, see, e.g., [1, 3, 8, 9, 13, 15], which treat a system as a single black box, even if it

contains components with known models and only some need to be learned.

We propose to generalize the FSM inference problem to the case when an FSM to learn

is a part of a modular system. Indeed, the traditional automaton/FSM inference problem

statement is a particular case of this general situation, namely, when the rest of the system

is a single state machine performing just a bijection of external and internal inputs. We

know the only work [18] addressing the grey box learning problem, where the goal is to

learn a tail FSM in the serial composition with the context FSM. We propose an approach

for solving the grey box learning problem that does not depend on the composition topol-

ogy, as opposed to the previous work [18].

To simplify the discussions, we model a system with two communicating FSMs, one

machine represents an embedded component and another the remaining part of the system,

the context. Assuming that the context FSM is known, we elaborate an approach to learn

the embedded FSM without directly interacting with it. The proposed approach relies on a

SAT-solving method for FSM inference from sample traces. The approach also allows to

solve the problem of conformance testing in context, which is to check whether an embed-

ded implementation FSM composed with the given context is equivalent to the embedded

specification FSM also composed with the context. The novelty of the conformance testing

method is that it directly generates a complete test suite for the embedded machine and

avoids using nondeterministic approximations with their tests, eliminating thus several

sources of test redundancy inherent in the existing methods.

The paper is organized as follows. Section 2 provides definitions related to state ma-

chines and automata needed to formalize the approach. Communicating FSMs are formally

3

defined and illustrated on a working example in Section 3. A SAT-solving method for FSM

inference from traces, which allows to obtain different conjectures [10] as required by the

proposed methods, is recalled in Section 4. Section 5 presents our method for complete test

generation for embedded components. In Section 6 we present some experimental results

concerning test generation. Section 7 describes the method for embedded FSM inference

and Section 8 concludes.

2 Definitions

A Finite State Machine or simple machine M is a 5-tuple (S, s0, I, O, T), where S is a

finite set of states with an initial state s0; I and O are finite non-empty disjoint sets of inputs

and outputs, respectively; T is a transition relation T  S  I  O  S, (s, a, o, s)  T is a

transition. When we need to refer to the machine being in state s  S, we write M/s.

M is complete (completely specified) if for each tuple (s, a)  S  I there exists transi-

tion (s, a, o, s)  T, otherwise it is partial. It is deterministic if for each (s, a)  S  I there

exists at most one transition (s, a, o, s)  T, otherwise it is nondeterministic. FSM M is a

submachine of M' = (S', s0, I, O, T') if S  S' and T  T'.

An execution of M/s is a finite sequence of transitions forming a path from s in the state

transition diagram of M. The machine M is initially connected, if for any state s  S there

exists an execution from s0 to s. Henceforth, we consider only deterministic initially con-

nected machines.

A trace of M/s is a string in (IO)* which labels an execution from s. Let Tr(s) denote the

set of all traces of M/s and TrM denote the set of traces of M/s0. For trace   Tr(s), we use

s-after- to denote the state M reached after the execution of , for an empty trace  s-

after- = s. When s is the initial state we write M-after- instead of s0-after-.

Given a string   (IO)*, the I-restriction of  is a string obtained by deleting from 

all symbols that are not in I, denoted I.

The I-restriction of a trace   Tr(s) is said to be a transfer sequence from state s to state

s-after-. The length of a trace is defined as the length of its I-restriction. A prefix of trace

  Tr(s) is a trace   Tr(s) such that the I-restriction of the latter is a prefix of the former.

Given an input sequence , we let out(s, ) denote the O-restriction of the trace that has

 as its I-restriction. States s, s  S are equivalent w.r.t. , if out(s, ) = out(s, ), denoted

s ≅ sthey are distinguishable by , if out(s, )  out(s, ), denoted s ≇ s or simply s

≇ s. States s and s are equivalent if they are equivalent w.r.t. all input sequences, i.e., Tr(s)

= Tr(s), denoted s ≅ s. The equivalence and distinguishability relations between FSMs is

similarly defined. Two FSMs are equivalent if their initial states are equivalent.

Given two FSMs M = (S, s0, I, O, T) and M′ = (S′, s′0, I, O, T′), their product M  M′ is

the FSM (P, p0, I, O, H), where p0 = (s0, s'0) such that P and H are the smallest sets satisfying

4

the following rule: If (s, s')  P, (s, x, o, t)  T, (s', x, o', t')  T', and o = o', then (t, t')  P

and ((s, s'), x, o, (t, t'))  H. It is known that if M and M′ are complete machines then they

are equivalent if and only if the product M  M′ is complete.

Two complete FSMs M = (S, s0, I, O, T) and M′ = (S′, s′0, I, O, T′) are called isomorphic

if there exists a bijection f: S → S′ such that f(s0) = s′0 and for all a  I, o  O, and s  S,

f(s-after-ao) = f(s)-after-ao. Isomorphic FSMs are equivalent, but the converse does not

necessarily hold.

Given a string   (IO)* of length ||, let Pref() be the set of all prefixes of . We

define a (linear) FSMW() = (X, x0, I, O, D), where D is a transition relation, such that

|X| = || + 1, and there exists a bijection f: X  Pref(), such that f(x0) = , (xi, a, o, xi+1) 

D if f(xi)ao = f(xi+1) for all i = 0, …, || - 1, in other words, W() has the set of traces

Pref(). We call it the -machine. Similarly, given a finite prefix-closed set of traces  

(IO)* of some deterministic FSM, let W() = (X, x0, I, O, D) be the acyclic deterministic

FSM such that  is the set of its traces, called an -machine. The bijection f relates states

of this machine to traces in .

While the set of traces of the -machine is , there are many FSMs which contain the

set  among their traces. We restrict our attention to the set of all FSMs with at most n

states and alphabets I and O, denoted ℑ(n, I, O). An FSM C = (S, s0, I, O, T), C  ℑ(n, I,

O) is called an -conjecture, if   TrC.

The states of the -machine W() = (X, x0, I, O, D) and an -conjecture C = (S, s0, I,

O, T) are closely related to each other. Formally, there exists a mapping : X  S, such that

(x) = s0-after-f(x), the state reached by C with the trace f(x)  . The mapping  is unique

and induces a partition C on the set X such that x and x belong to the same block of the

partition C, denoted x =C
 x, if (x) = (x).

Given an -conjecture C with the partition C, let D be an -conjecture with the parti-

tion D, such that   , we say that the partition C is an expansion of the partition D, if

its projection onto states of  coincides with the partition D.

A finite set of input sequences L  I*is a checking experiment for a complete FSM M

with n states if for each FSM N  ℑ(n, I, O), such that N ≅L M, it holds that N ≅ M.

Checking experiments are also called complete (i.e., sound and exhaustive) tests.

We also use the classical automaton model. A Finite Automaton A is a 5-tuple (P, p0, X,

T, F), where P is a finite set of states with the initial state p0; X is a finite alphabet; T is a

transition relation T  S  X {}  S, where  represents an internal action, and F is a set

of final or accepting states. We shall use several operations over automata, namely, expan-

sion, restriction, and intersection, following [16].

Given an automaton A and a finite alphabet U, U  X = , the U-expansion of automaton

A is the automaton denoted AU obtained by adding at each state a self-looping transition

labeled with each action in U.

5

For an automaton A and an alphabet U  X, the U-restriction of automaton A is the

automaton denoted AU obtained by replacing each transition with the symbol in X\U by an

-transition between the same states.

Given automata A = (P, p0, X, T, FA) and B = (R, r0, Y, Z, FB), such that X  Y  , the

intersection A  B is the largest initially connected submachine of the automaton (P  R,

(p0, r0), X  Y, Q, FA  FB), where for each symbol a  X  Y and each state (p, r)  P 

R, ((p, r), a, (p, r))  Q, if (p, a, p)  T and (r, a, r)  Z.

We also define an automaton corresponding to a given FSM M. The automaton, denoted

by A(M), is obtained by splitting each transition of M labeled by input/output into two tran-

sitions labeled by input and output, respectively, and connecting them with an auxiliary

non-final state. The original states of M are only final states of A(M), hence the language of

A(M) coincides with the set of traces of M.

3 Communicating FSMs

The behavior of a modular system composed of FSM components depends on its envi-

ronment. The two together constitute a closed system. Communications in it can either be

via messages or by method calls, using no queues. We restrict our attention to the case when

queues are not used, which is possible with a so-called slow environment assuming that the

closed system operates with a single message in transit [12]. This is a sufficient condition

for the existence of a deterministic FSM modelling the external behavior of a modular sys-

tem [12, 16]. Such an environment can be modelled by a (chaos) automaton Env with two

states, out of which the initial state is the final state, shown in Fig. 1. After issuing an ex-

ternal input in X to the system it waits until an external output in O is produced before

executing a next input. Its language is the set (XO)*.

We further consider only two deterministic FSMs, one of them representing an embed-

ded component E and another the remaining part of the modular system, aka context K, as

shown in Fig.1.

Fig.1. Closed system of two FSMs K and E with the environment.

We assume that the sets X, O, U, and V are pairwise disjoint. The context FSM K assumed

to be a complete machine interacts with the environment and can process an external input

after it produces an internal output even before an external output is emitted. Since this

violates the restriction of having a single message in transit, we constrain its behavior by

composing it with the slow environment. Let A(K) be the automaton of the context FSM K.

Then the intersection of automata A(K)  EnvUV = A(K)slow represents the behavior of the

 K E

X

O

U

V

K  E

X
O

Env

6

context constrained by the slow environment. Then the intersection A(K)slow  A(E)XO

denoted by A(K)  A(E) describes the behavior of the closed system, called the composite

automaton of the modular system.

Fig. 2. The context FSM K (a), embedded FSM E (b) and composite FSM K  E (c).

The language of A(K)  A(E) is the set of all strings labelling all the executions of the

system L(A(K)  A(E)). Restricting a string to the alphabets of a component FSM we obtain

a trace of the context or embedded FSM. The external behavior of the system is expressed

in terms of external inputs X and outputs O, so it is the set of (X  O)-restrictions of A(K) 

A(E), i.e., external traces of the system. They are traces of an FSM, provided that A(K) 

A(E) has no livelocks, i.e., cycles labelled by symbols in U  V [16], the machine can be

obtained by removing -transitions in (A(K)  A(E))XO and pairing each input with a sub-

sequent output, if it exists, to an FSM transition’s label. If some external input is not fol-

lowed by an external output it is deleted from the corresponding state of (A(K)  A(E))XO,

as a result, the FSM becomes partial. If all inputs are deleted from the initial state then the

machine has a single state and no transition. We let K  E denote the resulting FSM, called

the composite FSM of the modular system.

Given two FSMs E and E over the alphabets U and V, such that the composite machines

K  E and K  E are complete FSMs, we say that E and E are externally equivalent (or

equivalent in context) if K  E ≅ K  E. Clearly, E ≅ E implies K  E ≅ K  E, but the

converse does not hold. Testing in context uses external equivalence as a conformance re-

lation between implementations of a component embedded in a modular system and its

specification.

A finite set of input sequences L  X*is an external checking experiment (complete test

suite) for the embedded FSM E w.r.t. ℑ(n, U, V), if for each FSM N  ℑ(n, U, V), where n

is the number of states in E such that K  N ≅L K  E, it holds that K  N ≅ K  E.

Example. Consider the context FSM K and embedded FSM E shown in Fig. 2 together

with the composite FSM K  E. The composite automaton A(K)  A(E) is shown in Fig. 3.

a b
3

x1/u1
v2/u2

x2/u1 v1/u1
x1/u2
v1/o1 x2/o2 v2/o1

1 u2/v1

u2/v2
u1/v1
u1/v1 u2/v1 3

2
u1/v1

x2/o1

x1/o1 x1/o1

x2/o1 x1/o1

x2/o2 x1/o1
x2/o2

(a)

(b)
(c)

7

Fig. 3. The composite automaton A(K)  A(E), final states are in bold.

4 Passive Inference with SAT-solving

Henceforth, we first provide a brief overview of the SAT-solving based method for con-

jecture generation from a given set of traces avoiding regeneration of already considered

conjectures which is the basic step of testing and learning an FSM in isolation [10] and an

embedded FSM, as we show in Section 5. For a detailed presentation, the reader is referred

to [10].

The basic step of conjecture inference from a given set of traces is state merging of

the -machine. SAT-solving approaches [6, 9] encode the problem into Boolean con-

straints, a solution if it exists is a conjecture with a given number of states. We use an

existing encoding of a set of traces  into a Boolean formula formula [6]. Let W() = (X,

x0, I, O, D) be the -machine. Each state of the -machine is represented by a variable x,

so xi  {0, …, n - 1}. Since the -machine is deterministic, the state variables satisfy the

constraint [1]:

xi, xj  X: if xi ≇ xj then xi  xj and

if a  I s.t. out(xi, a) = out(xj, a) = o then xi = xj ⇒ xi-after-ao = xj-after-ao (1)

An assignment of values to variables such that the formula (1) is satisfied defines a map-

ping : X  S, where S is the set of states of an -conjecture, i.e., the mapping  defines a

partition of X into n blocks.

These CSP (constraint satisfaction problem) formulas are then translated to SAT using

unary coding for integer variables, represented by n Boolean variables vx,0, …, vx,n-1. For

each x  X, we have the clause:

vx,0 …  vx,n-1 (2)

For each state x  X and all i, j  {0, …, n - 1} such that i  j, we have the clauses:

 vx,i   vx,j (3)

v1 u1 u1 v1 o1

x2

x2 o2

x1 u2

x1

u1
v1 o1 x2

x1

o2

x1
x2

u1 v1

u2 v2
o1

8

We use auxiliary variables ex,y [6]. For every x, y X such that x ≇ y we have

ex,y (4)

For all x, y X such that out(x, a) = out(y, a) = o, we have

ex,y ⇒ ex-after-ao,y-after-ao (5)

For every x, y X and all i  {0, …, n - 1}

ex,y  vx,i ⇒ vy,i (6)

ex,y  vx,i ⇒ vy,i (7)

The resulting Boolean formula is the conjunction of clauses (2) - (7).

The traditional use of SAT solvers for state minimization aims at obtaining a single con-

jecture, while the problems of conformance testing and learning require that constraints

should allow a solver to check, once a conjecture is found, whether another non-equivalent

conjecture exists. Absence of a conjecture proves that a checking experiment is constructed

and the machine is identified.

This is achieved by using the following procedure to infer a conjecture that differs from

already considered conjectures. Isomorphic conjectures are identified by their common par-

tition, encoded into an additional constraint. Recall that states of an -machine form a par-

tition defined by an -conjecture. We let  denote a set of partitions of states of -ma-

chines, where  .

Algorithm 1. Infer_conjecture(, n, ) [10]

Input: A set of traces , an integer n, and a set of partitions 

Output: An -conjecture with at most n states such that its partition does not expand

any partition in , or False.

1. formula = conjunction of the clauses (2) - (7)

2. for all    do

3. clause = False

4. for all x, ysuch that x = y do

5. clause = clause  ex,y

6. end for

7. formula = formula  clause

8. end for

9. return call-solver(formula)

To check the satisfiability of a formula one can use any of the existing solvers, calling

the function call-solver(formula). If a solution exists then we have an -conjecture with n

or fewer states. The latter is obtained from the determined partition on X.

9

5 External Checking Experiment Construction

Solving the problem of external checking experiment generation, we use as in our previ-

ous work [10] Algorithm 1 for conjecture inference from a current set of traces. The differ-

ence, however, is that traces now no longer belong to a machine considered in isolation (this

becomes even more crucial for active inference), they are produced by an embedded com-

ponent. Accordingly, instead of checking the equivalence of a conjecture to the specifica-

tion machine, we must check their external equivalence. To this end, we need to compose

a conjecture C and the context K. As discussed above, if the resulting composite automaton

A(K)  A(C) has a livelock, its external behavior cannot be specified by an FSM, since an

external input triggering livelock cannot be paired with any output. To deal with this issue

we formulate a new constraint (in the form of a partition, as before) avoiding its regenera-

tion by a solver. Once the current conjecture composed with the context yields a composite

FSM K  C an external input sequence distinguishing it from the given composite machine

K  E can be determined, if they are not equivalent. The found sequence is added to a current

set of input sequences. The distinguishing external input sequence is the X-restriction of the

word of the automaton A(K)  A(C) from which a trace of the embedded component is

obtained as the (U  V)-restriction and used to generate a next conjecture. If, however, no

new trace of the embedded component is obtained and the state partition of the conjecture

distinguishable from the specification machine is added as a constraint to avoid its regener-

ation. The process iterates until the constraints are no longer satisfiable. The procedure is

implemented in Algorithm 2.

Algorithm 2. Generating external checking experiment

Input: Complete deterministic FSMs K and E such that the composite machine K  E is

a complete FSM

Output: An external checking experiment  for the embedded FSM E w.r.t. ℑ(n, U, V)

1.  :=

2.  := 

3.  := 

4. while an -conjecture C is returned by Infer_conjecture(, n, ) do

5. if A(K)  A(C) has a livelock or (K  C) (K  E) is complete then

6.   :=   {C}

7. else

 Determine an input sequence a such that  is the shortest transfer se-

quence to a state with the undefined input a in (K  C) (K  E)

9.  := a

10. Let   L(A(K)  A(E)) such that X = a

11. if (U  V)   then

12. :=   {C}

13. else

10

14.  := (U  V)

15. end if

16. end if

17. end while

18. return 

Algorithm 2 calls Infer_conjecture(, n, ), which in turn calls a SAT solver constrain-

ing it to avoid solutions of already considered conjectures.

Note that the Boolean formula used by the SAT solver is built incrementally; a current

formula is saved and new clauses are added when a set  or  is augmented.

Example. We illustrate Algorithm 3 using the context and embedded machines in Fig. 2.

We assume n = 2. Initially, the set of external input sequences  is empty, so is the set of

internal input sequences . The function Infer_conjecture(, n, ) for the empty set 

returns a -conjecture C0 as an FSM with a single state and no transitions. The composite

machine K  C has no transitions either. We choose the external input x1, so = {x1}. This

input is the X-restriction of the word  = x1u1v1u1v1o1 in A(K)  A(E). Its restriction onto the

alphabets of the embedded component is (U  V) = u1v1u1v1.  = {u1v1u1v1}. The function

Infer_conjecture(, n, ) for the empty set  returns a -conjecture C1 as an FSM with a

single state and transition labelled u1/v1. The composite FSM K  C1 is shown in Fig. 4 (a).

Fig. 4. Constructing the external checking experiment.

The FSM K  C1has an undefined input x1 in the second state, we take the external input

sequence x1x1, so now = {x1x1}. It is the X-restriction of the word  = x1u1v1u1v1o1x1u2v1o1

in A(K)  A(E). Its restriction onto the alphabets of the embedded component is (U  V) =

u1v1u1v1u2v1.  = {u1v1u1v1u2v1}. The function Infer_conjecture(, n, ) for the empty set

x1/o1 x2/o1
x2/o2

(a)

x1/o1 x2/o1
x2/o2

(b)

x1/o1

 u2/v1
u1/v1

u2/v2 u1/v1

(c)

u2/v1 u1/v1
u2/v2 u1/v1

(d)

x2/o1

x1/o1 x1/o1

x2/o1
x1/o1

x2/o2 x1/o1
x2/o2

(e)

 u2/v1
u1/v1

u2/v2 u1/v1

(f)
x1/o1 x2/o2

x2/o1
x1/o1 x2/o2

x1/o1 (g)

11

 returns a -conjecture C2 as an FSM with a single state and two transitions labelled u1/v1

and u2/v1. The composite FSM K  C2 is shown in Fig. 4 (b). It is a complete machine,

however, the product (K  C) (K  E) is a partial machine, since its behavior is not speci-

fied for the input sequence x2x1x2. In fact, this sequence demonstrates that K  C2 ≇ K  E,

since K  C2 reacts with the o1o1o2, while K  E with o1o1o1.

The input sequence x2x1x2 is added to , which becomes x1x1, x2x1x2}. The sequence

x2x1x2 is the X-restriction of the word  = x2u1v1o1 x1u2v2o1x2u1v1o1 in A(K)  A(E). Its re-

striction onto the alphabets of the embedded component is (U  V) = u1v1u2v2u1v1.  =

{u1v1u1v1u2v1, u1v1u2v2u1v1}. Next -conjecture C3 is shown in Fig. 4 (c). The composite

FSM K  C3 is isomorphic to K  E. Now the set of partitions  should include the following

partition of prefixes of , as each of them is a state of the -machine:

1 = {, u1v1u1v1, u1v1u1v1u2v1, u1v1u2v2u1v1; u1v1, u1v1u2v2}.

In the next iteration, Infer_conjecture(, n, ) returns the -conjecture C4 shown in Fig.

7 (d). The composite FSM K  C4 is shown in Fig. 4 (e). It is not equivalent to K  E, and

the shortest input sequence distinguishing them is x1x1x1x2, it extends the existing sequence

x1x1.

The input sequence x1x1x1x2 is added to , which becomes x1x1x1x2, x2x1x2}. It is the X-

restriction of the word  = x1u1v1u1v1o1x1u2v1o1x1u2v1o1x2o2 in A(K)  A(E). We have (U 

V) = u1v1u1v1u2v1u2v1.  = {u1v1u1v1u2v1u2v1, u1v1u2v2u1v1}. Next -conjecture C5 is shown

in Fig. 4 (f). The composite FSM K  C5 is shown in Fig. 4 (g). It is not equivalent to K 

E, and the shortest input sequence distinguishing them is x2x1x2x1x2, it extends the existing

sequence x2x1x2.

The input sequence x2x1x2x1x2 is added to , which becomes x1x1x1x2, x2x1x2x1x2}. It is

the X-restriction of the word  = x2u1v1o1 x1u2v2o1x2u1v1o1x1u2v1o1x2o2. We have (U  V) =

u1v1u2v2u1v1u2v1.  = {u1v1u1v1u2v1u2v1, u1v1u2v2u1v1u2v1}. The function Infer_conjec-

ture(, n, ) returns False, since there is no solution which does not extend the partition

1. Algorithm 3 terminates with the external checking experiment  = x1x1x1x2,

x2x1x2x1x2}.

This example was used in the previous work [12] to illustrate a number of various ap-

proaches to construct complete tests for the embedded component, compared to them the

SAT solving approach elaborated here generates a much smaller test suite. For comparison,

we construct the same experiment assuming this time that n = 3. The prototype tool pre-

sented in Section 7 returns just seven tests.

Notice that the algorithm not only delivers an external checking experiment for the em-

bedded component, but also infers an FSM that is externally equivalent to the given embed-

ded FSM. In our example, the -conjecture C3 in Fig. 4 (c) is externally equivalent to the

FSM E in Fig. 2. This observation indicates that the approach should work for active infer-

ence of an embedded component. We elaborate a corresponding algorithm in Section 7.

12

Theorem 1. Given complete deterministic FSMs K and E such that the composite ma-

chine K  E is a complete FSM, Algorithm 2 returns an external checking experiment for

the embedded FSM E w.r.t. ℑ(n, U, V).

Sketch of Proof. When Algorithm 2 terminates the resulting set of external input se-

quence  is indeed a checking experiment, since by the post-condition of Infer_conjecture

no conjecture exists that is not externally equivalent to the given embedded FSM E. Note

that all complete conjectures externally equivalent to E are excluded because as soon as one

if found (including E itself), its partition is added to . Algorithm 2 will not generate the

same conjecture all over again and always terminates because the set of all possible conjec-

tures with at most n states is finite.

6 Preliminary Experiments

The complexity of checking experiments for complete deterministic FSMs is well under-

stood, however, no result exists yet on estimating complexity of external checking experi-

ments for embedded FSMs. Considering a system of two communicating machines, context

and embedded FSMs, the question arises which of them contribute more to the complexity

of external checking experiments. We decided to perform experiments aiming at shedding

some light on this.

Both machines are generated randomly for |X| = |O| = |U| = |V| = 2. In the first experiment,

we fix the number of states of an embedded FSM to six and vary that of the context; in the

second experiment, we fix the number of states of a context FSM to six and vary that of the

embedded FSM. For each pair of values, the average of ten instances obtained with a pro-

totype tool implementing Algorithm 2 is calculated and the results are illustrated in Fig. 6.

They indicate that the length of experiments grows with the number of states in an embed-

ded machine similar to an FSM considered in isolation, but the complexity of the context

seems not to be a significant contributor. More experiments are needed to check this con-

clusion.

Fig. 6. The length of external checking experiments vs the number of states in the con-

text (left hand side) and in the embedded machine (right hand side).

0

50

100

150

200

1 3 5 7 9 11 13 15 17 19

0

50

100

150

1 2 3 4 5 6

13

7 Active Inference of Embedded FSM

Given a composition of two complete deterministic FSMs K and E with the topology in

Fig.1, called a grey box, GB, where the context FSM K is known, while the embedded FSM

E is not, we want to learn the machine E by applying external inputs I and observing external

as well as internal outputs O, U, V, assuming that the embedded FSM E has at most n states.

External input sequences are applied to the grey box obeying the property of a slow

environment Env (Fig. 1), i.e., inputs are interleaved with outputs. We assume that livelocks

are removed from the grey box. The learning procedure is implemented in Algorithm 3. It

is an enhancement of Algorithm 2 replacing the FSM E by a current conjecture.

Algorithm 3. Inferring the embedded FSM and determining an external checking exper-

iment for it

Input A grey box GB and integer n

Output A minimal complete conjecture with at most n states and an external checking

experiment w.r.t. ℑ(n, U, V)

1: 

2: 



4: C := Infer_conjecture(, n, )

5: while an -conjecture D is returned by Infer_conjecture(, n, ) do

10: if A(K)  A(D) has a livelock or (K  D) (K  C) is complete then

11: :=   {D}

12: else

13: Determine an input sequence a such that  is the shortest transfer sequence from

a state of K  C reached by an input sequence   } to a state with the

undefined input a in (K  D) (K  C)

14: := a

Let  be a trace observed in GB when the external input sequence a is applied

16: if (U  V)   then

17: :=   {D}

18: else

19:  := (U  V)

20: if (U  V)TrC then

21: C := Infer_conjecture(, n, )

22: end if

23: end if

24: end while

25: return C and 

Example. We illustrate Algorithm 3 using the context and embedded machines in Fig. 2.

The embedded FSM is the one to be inferred and we use the composite automaton in Fig. 3

14

as the grey box. We assume n = 2. Initially, the set of external input sequences  is empty,

so is the set of internal input sequences . The function Infer_conjecture(, n, ) for the

empty set  returns a -conjecture C0 as an FSM with a single state and no transitions. Its

second execution yields D0 which has no transition. (K  C0) (K  D0) has no transitions

either. We choose the external input x1, so = {x1}. When this input is applied to the grey

box, the trace  = x1u1v1u1v1o1 is observed. Its restriction onto the alphabets of the embedded

component is (U  V) = u1v1u1v1.  = {u1v1u1v1}. The function Infer_conjecture(, n, )

for the empty set  returns a -conjecture with a single state and transition labelled u1/v1.

This machine becomes now the conjecture C1. The composite FSM K  C1 is shown in Fig.

4 (a). Next execution of the loop yields the conjecture D1 equivalent to C1.

The product (K  C1) (K  D1) has an undefined input x1 in the second state, we take

the external input sequence x1x1, so now = {x1x1}. When this input sequence is applied to

the grey box, the trace  = x1u1v1u1v1o1x1u2v1o1 is observed. Its restriction onto the alphabets

of the embedded component is (U  V) = u1v1u1v1u2v1.  = {u1v1u1v1u2v1}. The function

Infer_conjecture(, n, ) for the empty set  returns a -conjecture D2 with a single state

and two transitions labelled u1/v1 and u2/v1. This machine becomes now the conjecture C2.

The composite FSM K  C2 is shown in Fig. 4 (b). The product (K  C2) (K  D2) is a

complete machine, :=   {D2
} is executed, where D2

 = {, u1v1, u1v1u1v1, u1v1u1v1u2v1}.

The function Infer_conjecture(, n, ) for the set  returns a -conjecture D3 shown in

Fig. 5 (a). The composite FSM K  D3 is shown in Fig. 5 (b). Its behavior is not specified

for the input sequence x2x1.

The input sequence x2x1 is added to , which becomes x1x1, x2x1}. The grey box pro-

duces the trace  = x2u1v1o1 x1u2v2o1 when the sequence x2x1 is applied. Its restriction onto

the alphabets of the embedded component is (U  V) = u1v1u2v2.  = {u1v1u1v1u2v1,

u1v1u2v2}. Next -conjecture D4 is shown in Fig. 4 (c). This machine becomes now the

conjecture C3. The composite FSM K  C3 is isomorphic to the FSM in Fig. 2 (c). Then the

set of partitions  should include the following partition: D4
 = {, u1v1u1v1, u1v1u1v1u2v1;

u1v1, u1v1u2v2}.

In the next iteration, Infer_conjecture(, n, ) returns the -conjecture D5 shown in Fig.

4 (d). The composite FSM K  D5 is shown in Fig. 4 (e). It is not equivalent to K  C3, and

the shortest input sequence distinguishing them is x1x1x1x2, it extends the sequence x1x1.

The input sequence x1x1x1x2 is added to , which becomes x1x1x1x2, x2x1}. The sequence

applied to the grey box produces the trace  = x1u1v1u1v1o1x1u2v1o1x1u2v1o1x2o2. We have

(U  V) = u1v1u1v1u2v1u2v1.  = {u1v1u1v1u2v1u2v1, u1v1u2v2}. Next -conjecture D5 is shown

in Fig. 4 (f). The composite FSM K  D5 is shown in Fig. 4 (g). It is not equivalent to K 

E, and the shortest sequence distinguishing them is x2x1x2x1x2, it extends the sequence x2x1.

15

Fig. 5. -conjecture D3 (a) and the composite FSM K  D3 (b).

The input sequence x2x1x2x1x2 is added to , which becomes x1x1x1x2, x2x1x2x1x2}. Ap-

plied to the grey box it produces the trace  = x2u1v1o1 x1u2v2o1x2u1v1o1x1u2v1o1x2o2. We

have (U  V) = u1v1u2v2u1v1u2v1.  = {u1v1u1v1u2v1u2v1, u1v1u2v2u1v1u2v1}. The function In-

fer_conjecture(, n, ) returns False, since no solution with a state partition which does

not extend the partition D4
 can be found. Algorithm 3 terminates with the conjecture C3

(Fig. 4. (c)) that is externally equivalent to the embedded FSM E in Fig. 3 and its external

checking experiment  = x1x1x1x2, x2x1x2x1x2}. In this example, both algorithms give the

same experiment, though this should not be expected for other systems, since the function

call-solver(formula) can make nondeterministic choices in solving constraints. Moreover,

various input sequences can be chosen to deal with partial FSM products (see line 13 in

Algorithm 3).

Theorem 2. If a grey box behaves as a complete FSM and the embedded FSM E has n

states, Algorithm 3 infers a conjecture with at most n states that is externally equivalent to

E and constructs an external checking experiment for it.

Sketch of Proof. Algorithm 3 follows the steps of Algorithm 2, just replacing the FSM

E by a current conjecture. This does not influence its termination since it only occurs when

no more externally distinguishable conjecture can be found. At some point, because the

grey box behaves as a composite FSM of the known context FSM and the embedded ma-

chine with n states, an FSM that is externally equivalent to E will be returned by Infer_con-

jecture. The resulting set of external input sequences is an external checking experiment for

the resulting FSM, as in Theorem 1.

8 Conclusions

We considered a system of communicating FSMs and investigated possibilities for active

learning and testing of an embedded FSM without disassembling the system. The contribu-

tion of this paper is the generalization of the isolated FSM inference problem to that of an

FSM embedded in a modular system (grey box learning) and an approach for solving this

problem that does not depend on the composition topology. The approach also offers a

novel solution to embedded testing by generating a complete test suite directly for the em-

bedded machine that avoids intermediate testing of nondeterministic approximations, elim-

inating thus several sources of test redundancy inherent in the existing methods. We plan

x2/o1

x1/o1

x2/o1 x1/o1

x2/o2 x1/o1 x2/o2 u2/v1
u1/v1
u1/v1

(a)

(b)

16

to perform more experiments to assess the proposed methods, especially for learning em-

bedded components.

Acknowledgements. This work was partially supported by MESI (Ministère de l’Écono-

mie, Science et Innovation) of Gouvernement du Québec, NSERC of Canada and CAE.

References

1. Biermann, A. W., Feldman, J. A. On the synthesis of finite-state machines from samples of their

behavior. IEEE Transactions on Computers, 100(6), 592-597 (1972)

2. El-Fakih, K., Petrenko A., Yevtushenko, N. FSM test translation through context. In Testing of

Communicating Systems, LNCS 3964, 245-258 (2006)

3. Gold, E. M. Complexity of automaton identification from given data. Information and control,

37(3), 302-320 (1978)

4. Groz, R., Li, K., Petrenko, A., Shahbaz, M. Modular system verification by inference, testing and

reachability analysis. In Testing of Software and Communicating Systems, Springer, 216-233

(2008)

5. Groz, R., Li. K., Petrenko, A. Integration testing of communicating systems with unknown com-

ponents, Annals of Telecommunications, Springer, 70 (3), 107-125 (2015)

6. Heule, M.J., Verwer, S. Exact DFA identification using SAT solvers. In ICGI, 66-79 (2010)

7. Luo G., Bochmann, G. v., Petrenko, A. Test selection based on communicating nondeterministic

finite-state machines using a generalized Wp-method, IEEE Transactions on Software Engineer-

ing, 149-162 (1994)

8. K. Meinke. CGE: A sequential learning algorithm for Mealy automata. In ICGI, 148-162 (2010).

9. Oliveira, A. L., Silva, JPM. Efficient algorithms for the inference of minimum size DFAs. Ma-

chine Learning, 4 (1), 93-119 (2001)

10. Petrenko, A., Avellaneda, F., Groz, R., Oriat, C. From passive to active FSM inference via check-

ing sequence construction. In Testing Software and Systems. Springer, 126-141 (2017)

11. Petrenko, A., Yevtushenko, N., Bochmann, G. v., Dssouli, R. Testing in context: framework and

test derivation. Computer Communications, 19 (14), 1236-1249 (1996)

12. Petrenko, A., Yevtushenko, N., Bochmann, G.v. Fault models for testing in context, Formal De-

scription Techniques IX, 125-140 (1996)

13. Rivest, R.L., Schapire, R.E. Inference of finite automata using homing sequences. Machine

Learning: From Theory to Applications. Springer, 51-73 (1993)

14. Petrenko, A., Yevtushenko, N. Testing faults in embedded components, In the 10th International

Workshop on Testing of Communicating Systems, 272-287 (1997)

15. Steffen, B. et al. Active Automata Learning: From DFAs to interface programs and beyond,

ICGI, 195–209 (2012)

16. Villa, T., Petrenko, A., Yevtushenko, N., Mishchenko, A., Brayton, R. Component based design

by solving language equations. Proceedings of the IEEE, 103 (11), 2152 - 2167 (2015)

17. Jaffar-ur Rehman, M., Jabeen, F., Bertolino, A., Polini, A. Testing software components for in-

tegration: a survey of issues and techniques. Softw. Test. Verif. Reliab., 17, 95–133 (2007)

18. Abel A, Reineke J. Gray-box learning of serial compositions of Mealy machines. NASA Formal

Methods Symposium, 272-287 (2016)

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=7302610

