
Learning Optimal Decision Trees from Large
Datasets

Florent Avellaneda

Computer Research Institute of Montreal,
405 Ogilvy Avenue, Suite 101

Montreal (Quebec), H3N 1M3, Canada
Florent.Avellaneda@crim.ca

Abstract. Inferring a decision tree from a given dataset is one of the
classic problems in machine learning. This problem consists of build-
ings, from a labelled dataset, a tree such that each node corresponds to
a class and a path between the tree root and a leaf corresponds to a
conjunction of features to be satisfied in this class. Following the prin-
ciple of parsimony, we want to infer a minimal tree consistent with the
dataset. Unfortunately, inferring an optimal decision tree is known to be
NP-complete for several definitions of optimality. Hence, the majority
of existing approaches relies on heuristics, and as for the few exact in-
ference approaches, they do not work on large data sets. In this paper,
we propose a novel approach for inferring a decision tree of a minimum
depth based on the incremental generation of Boolean formula. The ex-
perimental results indicate that it scales sufficiently well and the time it
takes to run grows slowly with the size of dataset.

Keywords: Decision Tree · SAT Solver · Inference.

1 Introduction

In machine learning, the problem of classification consists of inferring a model
from observations (also called training examples) that make it possible to identify
which class of a set of classes a new observation belongs to. When the training
examples used to infer a model are assigned to the classes to which they belong, it
is called supervised learning. Many machine learning models exist to solve this
problem, such as support vector machines [21], artificial neural network [12],
decision trees [17], etc. Because inferring such models is complicated and the
number of training examples is generally very large, most existing inference
algorithms are heuristic in the sense that the algorithms infer models without
any guarantee of optimality.

Although these heuristic-based techniques generally work well, there are al-
ways cases where a new example is not correctly recognized by the model. In
the context of critical systems in which errors are not allowed, such models
are difficult to use. This requirement often goes together with the demand that
models must also be understandable. Known as eXplainable AI (XAI), this area

ar
X

iv
:1

90
4.

06
31

4v
1 

 [
cs

.L
G

] 
 1

2 
A

pr
 2

01
9



2 Florent Avellaneda

consists of inferring models capable of explaining their own behaviour. XAI has
been the subject of several studies in recent years [3,10,15,20], as well as several
events [1, 2]. One approach to obtain an explainable model is to use decision
trees because the reasons for classification are clearly defined [17].

In order to obtain accurate and explainable models, we are interested in the
inference of optimal decision trees. The optimality of a decision tree is generally
defined by the simplicity of the tree based on the principle of parsimony. Our
chosen simplicity criteria are the depth of the tree and the number of nodes. In
particular, for a fixed maximum depth of the tree, we want to infer a decision tree
with a minimum number of nodes that is consistent with the training examples.

Although decision tree inference is a well-studied classic problem, the ma-
jority of known algorithms are heuristic and try to minimize the number of
nodes without guaranteeing any optimality [8,13,17,19]. It is because the prob-
lem is known to be NP-complete for several definitions of optimality [11,14]. In
addition, the first algorithms to infer optimal decision trees were ineffective in
practice [18]. However, in recent years, several studies have focused on improving
the performance of optimal decision tree inference algorithms.

The first series of studies was carried out on a similar problem to ours: infer-
ring optimal decision tree with a given depth such that the total classification
error on the training examples is minimized [5, 6, 22]. For this problem, Verwer
and Zhang [22] propose a binary linear programming formulation that infers
optimal decision trees of depths four in less than ten minutes.

The studies closest to ours are those of Bessier et al. [7] and Narodytska et
al. [16]. These authors were interested in a particular case of our problem: infer-
ring decision trees with a minimal number of nodes without trying to minimize
the depth. Bessier et al. propose a SAT formulation, but experiments show that
the method only works for small models, i.e., trees of about fifteen nodes. The
authors also propose a method based on constraint programming to minimize
the number of nodes, but without necessarily reaching the optimal. Narodytska
et al. propose a new SAT formulation that greatly improves the practical per-
formance of optimal decision tree inference. Thus, with their new formulation,
Narodytska et al. were able to build, for the “Mouse” dataset, a decision tree
with a minimum number of nodes in 13 seconds, while this required 577 seconds
with the SAT formulation of Bessier et al. The authors claim that to the best of
their knowledge, their paper is the first presentation of an optimal decision tree
inference method based on well-known datasets.

In this paper, we propose an even more efficient method than the last one.
Our benchmarks show that we can process the “Mouse” dataset in only 75
milliseconds. Moreover, well-known datasets that were considered too large to
infer optimal decision trees from them can now be processed by our algorithm.

The paper is organized as follows. In the next section, we provide definitions
related to decision trees needed to formalize the approach. Section 3 provides
a new Boolean formulation for passive inference of a decision tree from a set
of training examples. We propose in Section 4 an incremental way of generat-
ing the Boolean formulas which ensures that the proposed approach scales to



Learning Optimal Decision Trees from Large Datasets 3

large datasets. Section 5 reports several experiments comparing our approach to
others. Finally, we conclude in Section 6.

2 Definitions

Let E = {e0, ..., en−1} be a set of training examples, that is, Boolean valuations
of a set F = {f0, f1, ..., fm−1} of features, and let E0, E1, ..., Ec−1 be a partition
of E into classes. Note that even if we only consider binary features, we can
easily handle non-binary features by encoding them in a binary way [4]. Features
that belong to x categories can be represented by x Boolean features where
each one represents the affiliation to one category. If the categories are ordered,
then each Boolean feature can represent the affiliation to a smaller or equal
category (see Example 1). The second encoding provides constraints of type
≤ on numerical features for example. In the following, we denote by e[f ] the
Boolean valuation of the feature f ∈ F in example e ∈ E . A decision tree is
a binary tree where each node is labelled by a single feature and each leaf is
labelled by a single class. A decision tree is said to be perfect if all leaves have
the same depth and all internal nodes have two children. Formally, we denote

a perfect decision tree by T = (V, V ′) where V ∈ F2k−1 is the set of internal

nodes and V ′ ∈ {0, 1, ..., c− 1}2k is the set of leaves and where k is the depth of
the tree. We denote by V [i] the ith node in the tree T and by V [1] the root of
the tree. Then we define V [i× 2] as the left child of V [i] and V [i× 2 + 1] as the
right child. In a similar way, if i ≥ 2k−1, we define the leaf V ′[(i− 2k−1)× 2] as
the left child of V [i] and the leaf V ′[(i − 2k−1) × 2 + 1] as the right child. An
illustration of this encoding is depicted by Figure 1.

V [1]

V [2] V [3]

V [4] V [5] V [6] V [7]

V ′[0] V ′[1] V ′[2] V ′[3] V ′[4] V ′[5] V ′[6] V ′[7]

false true

false true false true

false true false true false true false true

Fig. 1. Illustration of nodes index coding.

This way of associating a number to every node and leaf may appear compli-
cated, but it will be useful for our Boolean encoding. We will use the semantics
associated with binary coding of node indexes to obtain compact SAT formulas.



4 Florent Avellaneda

If T is a decision tree, and E is a set of training examples, we say that T is
consistent with E , denoted E ⊆ T , if each example e ∈ E is correctly classified
by T .

Example 1. Let E be a set of training examples where each example has a single
integer feature f . Let E0 = {(1), (3)} and E1 = {(4), (5)} be the partition of E
into two classes. Then, we can transform E0 and E1 into E ′0 and E ′1 such that each
example has four Boolean features f ′0, f

′
1, f
′
2, f
′
3. If the feature f ′0 is true, it means

that the example is smaller or equal to 1 for feature f ; if the feature f ′1 feature is
true, it that the example is smaller or equal to 3 for feature f , etc. Thus, with this
transformation we obtain E ′0 = {(true, false, false, false), (true, true, false, false)}
and E ′1 = {(true, true, true, false), (true, true, true, true)}.

3 Passive Inference

There are two types of methods for solving the problem of inferring a decision
tree from examples.

One group constitutes heuristic methods which try to find a relevant feature
for each internal node in polynomial time [8, 13, 17, 19]. They are often used
in practice because of their efficiency; however, they provide no guarantee of
optimality. Thus, better choices in the feature order can lead to smaller decision
trees that are consistent with training examples.

Another group includes exact algorithms to determine a decision tree with a
minimal number of nodes. It is a much more complicated problem, as it is NP-
complete [14]. There are essentially two works that focus on this problem [7,16].

We propose a SAT formulation that differs from them. Our approach has two
main steps. In the first step, we seek a perfect decision tree of a minimal depth.
In a second step, we add constraints to reduce the number of nodes in order to
potentially obtain an imperfect decision tree.

3.1 Inferring perfect decision trees of fixed maximum depth

Our SAT encoding to infer decision trees of a fixed maximum depth is based on
the way the nodes are indexed. As mentioned in Section 2, the index of a node
depends on its position in the tree. In particular, the root node corresponds to
the node V [1], and for each node V [i], the left child corresponds to V [i× 2] and
the right child to V [i × 2 + 1]. This coding has a useful capability of providing
precise information on the position of a node based on the binary coding of its
index. Indeed, reading the binary coding of a node from the highest to the lowest
weight bit indicates which branches to take when moving from the root to the
node. For example, if the binary coding of i is 1011, then the node V [i] is reached
by taking the right branch of the root, then the left branch, and finally twice
the right branch. Note that if a node V [i] is a descendant of the right branch of
a node V [j] then we say that V [j] is a right ancestor of V [i].

The idea of our coding consists in arranging the training examples in the
leaves of the tree while respecting the fact that all training examples placed in



Learning Optimal Decision Trees from Large Datasets 5

the same leaf must belong to the same class. Moreover, if an example is placed
in a leaf, then all the right ancestors of that leaf can only be labelled by features
true for that example (and conversely for the left ancestor).

The encoding idea is formalized using the following types of Boolean vari-
ables.

– Xi,j : If the variable Xi,j is true, it means that the example ei is assigned to a
leaf that is a right ancestor of a node located at depth j. If Xi,j is false, then
ei is assigned to a leaf that is a left ancestor of that node. Note that with
this semantics on the variables Xi,j , we have the property that the binary
coding (Xi,0Xi,1...Xi,k−1), denoted Xi, corresponds to the index of the leaf
where the example ei belongs, i.e., if Xi = v, then the example ei is assigned
to the leaf V ′[v]. We also denote by Xi[..a] the number formed by the binary
coding of (Xi,0Xi,1...Xi,a).

– Fi,j : If Fi,j is true, it means that the node V [i] is labelled by the feature fj .
– Ci,j : If Ci,j is true, it means that the leaf V ′[i] is labelled by the class j.

We then use the following set of clauses to formulate constraints that a perfect
decision tree of depth k should satisfy.
For each i ∈ [1, 2k − 1], we have the clauses:

Fi,0 ∨ Fi,1 ∨ ... ∨ Fi,m−1 (1)

These clauses mean that each node should have at least one feature.

For each i ∈ [1, 2k − 1] and every features f1, f2 such that 0 ≤ f1 < f2 < m, we
have the clauses:

¬Fi,f1 ∨ ¬Fi,f2 (2)

These clauses mean that each node has at most one feature.

For every i and f such that ei[f ] = 0, and each j ∈ [0, k − 1], we have:

Xi,j ⇒ ¬FXi[..j],f (3)

And for every i and f such that ei[f ] = 1, and each j ∈ [0, k − 1], we have:

Xi,j ⇒ FXi[..j],f (4)

These formulas add constraints that some features cannot be found in certain
nodes depending on where the training examples are placed in the decision tree.
We use the binary coding of the index of a leaf to determine which nodes in
the tree are its parents. Thus, all the parent nodes for which the left branch
has been taken cannot be labelled by features that must be true, and vice versa.
Note that it is not trivial to translate these formulas into clauses, but we show in
Algorithm 1 how it could be done. This algorithm performs a depth-first search
of the perfect decision tree in a recursive way. The variable q corresponds to
the index of the current node and ¬clause constraints such that Xi correspond



6 Florent Avellaneda

to the index of a q successor. Each time the algorithm visits a state q, it adds
constraints on the features that can be labeled by this node based on where ei
is placed in the left or right branch of q. If e1 is placed in the left branch, then
q cannot contain a feature that is true for ei and vice versa with the right branch.

For each ei ∈ Ea with a ∈ [0, c− 1] and each integer v ∈ [0, 2k − 1], we have:

Xi = v ⇒ Cv,a (5)

And for each ei ∈ Ea, each integer v ∈ [0, 2k − 1], and a′ 6= a we have:

Xi = v ⇒ ¬Cv,a′ (6)

These formulas assign the classes to the leaves according to the places of the
training examples in the decision tree. Again, since it is not trivial to translate
these formulas into clauses, we show in Algorithm 2 how it could be performed.
This algorithm performs a depth-first search of the perfect decision tree such
that when it reaches a leaf, ¬clauses corresponds to the index of that leaf. After
that, for each leaf, the algorithm generates the constraints that if ei is present
in that leaf, then that leaf must have the same class as ei.

Algorithm 1 (GenerateFeatureConstraints)

Input: A new example ei, a clause clause, an index node q, the depth of the tree lvl
already considered. Initially, clause = ∅, q = 1 and lvl = 0.
Output: Clauses for formulas (3) and (4) when we consider a new example
ei

1: result = ∅
2: if lvl = k then
3: return result
4: end if
5: for all f ∈ [0,m− 1] such that ei[f ] = true do
6: result := result ∧ (clause ∨Xi,lvl ∨ ¬Fq,f )
7: end for
8: result := result∧GenerateFeatureConstraints(ei, (clause∨Xi,lvl), q× 2, lvl+ 1)
9: for all f ∈ [0,m− 1] such that ei[f ] = false do

10: result := result ∧ (clause ∨ ¬Xi,lvl ∨ Fq,f )
11: end for
12: result := result∧GenerateFeatureConstraints(ei, (clause∨¬Xi,lvl), q×2+1, lvl+

1)
13: return result



Learning Optimal Decision Trees from Large Datasets 7

Algorithm 2 (GenerateClassConstraints)

Input: A new example ei ∈ Ea, a clause clause, a node number q, an integer lvl and
an integer lvlMax. Initially, clause = ∅, q = 0 and lvl = 0.
Output: Clauses for formulas (5) and (6) when we consider a new example
ei

1: if lvl = lvlMax then
2: result = (clause ∨ Cq,a)
3: for Ea′ 6= Ea do
4: result := result ∧ (clause ∨ ¬Cq,a′)
5: end for
6: return result
7: end if
8: return GenerateClassConstraints(ei, clause ∨ Xi,lvl, q × 2, lvl + 1, lvlMax) ∪

GenerateClassConstraints(ei, clause ∨ ¬Xi,lvl, q × 2 + 1, lvl + 1, lvlMax)

3.2 Minimizing the number of nodes

Perfect decision trees are often considered as unnecessarily too large, i.e. they
can contain too many nodes. For example, there may be an imperfect decision
tree consistent with training examples, with the same depth k as the perfect
tree, but with fewer nodes.

In order to find a tree with a minimum number of nodes, we show in this
section how we can add constraints to set a maximum number of nodes of the
tree. The idea is to limit the number of leaves that can be assigned to a class in
the perfect tree. Indeed, if a leaf is not assigned to a class, then the parent of this
leaf can be replaced by its other child. By applying this algorithm recursively
until all leaves are assigned to a class, we get a decision tree with exactly one leaf
more than the internal nodes. Thus, limiting the number of nodes to MaxNodes
has the same effect as limiting the number of leaves to bMaxNodes/2c+ 1.

To add the constraint of the maximum number of leaves that can be assigned
to a class, we add two types of additional variables. The variables Ui which are
true if a class is assigned to the leaf i, and the variables Hi,0, Hi,1, ...,Hi,MaxNodes+1

which will be used to count, with unary coding, the number of leaves labelled
by a class. The variable Hi+1,j will be true if there are at least j leaves labelled
by a class among the i first leaves.

The clauses encoding the new constraint are as follows:
For each i ∈ [0, 2k − 1] and each class a ∈ [0, c− 1], we have the clauses:

¬Ci,a ∨ Ui (7)

These clauses assign Ui to true if the leaf i is labelled by a class.

For each i ∈ [0, 2k−1] and each class j ∈ [0,MaxNodes+1], we have the clauses:

¬Hi,j ∨Hi+1,j (8)

These clauses propagate the fact that if Hi,j is true, then Hi+1,j is also true.



8 Florent Avellaneda

For each i ∈ [0, 2k−1] and each class j ∈ [0,MaxNodes+1], we have the clauses:

¬Ui ∨ ¬Hi,j ∨Hi+1,j+1 (9)

These clauses increase the value of Hi+1 by one if Ui is true. Thus Hi+1,j is true
if there is at least j leaves labelled by class among the i first leaves.

Finally, we assign the start and end of the counter H :

¬H2k+1,bMaxNodes/2c+2 ∧H0,0 (10)

The first assignment prohibits having more than bMaxNodes/2c+ 1 leaves, so
MaxNodes nodes. The second assignment sets the counter to 0.

Proposition 1. The formula for inferring a decision tree of depth k (and a
specific number of nodes) from n training examples with m features classed in c
classes require O(2k×(n+m+c)) literals, and O(2k×(m2 +m×n+c)) clauses.

It can be noted that the number of literals and clauses whether the maximum
number of nodes is specified or not is of the same orders of magnitude. However,
finding a tree with a minimum number of nodes will take more time because it
requires us to search for this number by a dichotomous search.

4 Incremental Inference

To alleviate the complexity associated with large sets of training examples, we
propose an approach which, instead of attempting to process all the training
examples E at once, iteratively infers a decision tree from their subset (initially
it is an empty set) and uses active inference to refine it when it is not consistent
with one of the training examples. While active inference usually uses an oracle
capable of deciding to which class an example belongs, we assign this role to the
training examples E . Even if such an oracle is restricted since it cannot guess the
class for all possible input features, nevertheless, as we demonstrate, it leads to
an efficient approach for passive inference from training examples. The approach
is formalized in Algorithm 3.

An illustration of the execution of this algorithm is given in Appendix on a
simple example.

5 Benchmarks

In this paper, we have presented two algorithms to solve two different problems.
The first algorithm, denoted DT depth, finds a perfect decision tree of min-

imal depth. It uses Algorithm 3 without defining MaxNodes. We initially set
k = 1 and while the algorithm is not finding a solution, we increase the value of
k.



Learning Optimal Decision Trees from Large Datasets 9

Algorithm 3 (InferDecisionTree)

Input: The maximum depth k of the tree to infer, the maximal number MaxNodes
of nodes of the tree to infer, the set of training examples E = {E0, E1, ..., Ec−1}.
Output: A decision tree consistent with E with at most MaxNodes nodes and with
maximum depth k if it exists.

1: C := formulas (1) and (2)
2: while C is satisfiable do
3: Let T be a decision tree of a solution of C
4: if E ⊆ T then
5: return T
6: end if
7: Let e ∈ Ea be an example mislabelled by T
8: C := C ∧ GenerateFeatureConstraints(e, ∅, 1, 0) ∧

GenerateClassConstraints(e, ∅, 0, 0, k, a)
9: if MaxNodes is defined then

10: C := C ∧ C′ where C′ is clauses described by formulas (7), (8), (9) and (10).
11: end if
12: end while
13: return “No solution”

The second algorithm, denoted DT size, minimizes the depth of the tree
and the number of nodes. It starts by applying DT depth to leanr the minimum
depth k required to find a decision tree consistent with the training examples.
Then it performs a dichotomy search on the number of nodes allowed between
1 and 2k+1 − 1 to find a decision tree with a minimal number of nodes.

We compare our algorithms with the one of Bessiere et al. [7], denoted DT2,
and the one of Naradytska et al. [16], denoted DT1.

The main metric we will compare is the execution time and accuracy. The
accuracy is calculated with a k-fold cross-validation defined as follows. We divide
the dataset into k equal parts (plus or minus one element). Then k − 1 of these
parts are used to infer a decision tree, the last part is used to calculate the
percentage of its elements correctly classified by the decision tree. This operation
is performed k times to try all possible combinations among these ten parts and
the average percentage is calculated.

The prototype was implemented in C++ calling the SAT solver MiniSAT [9]
and we run the prototype on Ubuntu in a computer with 12GB of RAM and
i7-2600K processor.

5.1 The “Mouse” dataset

Our first experiment is performed on the “Mouse” dataset that the authors
Bessiere et al. shared with us. This dataset has the advantage of having been
used with both algorithm DT1 and DT2. In Table 1, we compare the time and
accuracy for different algorithms. Each entry in rows DT size and DT depth
corresponds to the average over 100 runs. The first four columns correspond to



10 Florent Avellaneda

inferring a decision tree from the whole dataset. The last column corresponds
the 10-fold cross-validations.

Table 1. Benchmark for “Mouse” dataset.

Algo Time (s) Examples used Clauses k Nodes acc.

DT2 577 1728 3.5M - 15 -
DT1 12.9 1728 1.2M - 15 -

DT size 0.075 37 42K 4 15 84.0%
DT depth 0.015 33 38K 4 31 85.6%

By analyzing Table 1, we can notice that our incremental approach is very
effective on this dataset. Only 37 examples for DT size and 33 examples for
DT depth were used to build an optimal decision tree consistent with the entire
dataset. Thus, thanks to our incremental approach and an efficient SAT formula-
tion, our algorithms are much faster than DT2 and DT1. We could not compare
the accuracy because this data is missing in the two respective papers for DT2
and DT1.

5.2 The “Car” dataset

Another data set provided to us and used by the authors Bessiere et al. and
Naradytska et al. is “Car”. This dataset is much more complicated and to the
best of our knowledge, no algorithm has been able to infer an optimal decision
tree consistent with the entire dataset. The authors Bessiere et al. process this
dataset using linear programming (denoted DT3) to minimize the number of
nodes. However, they do not guarantee that the decision tree they find is optimal.
The approach used by the authors Naradytska et al. simplifirs the dataset by
considering only 10% of the data. Thus, they can infer an optimal decision
tree consistent with the 10% of the data selected in 684 sec. Table 2 compares
the results of different algorithms. Each entry in rows DT size and DT depth
corresponds to the average over ten runs. The first four columns correspond to
inferring a decision tree from the whole dataset. The last column corresponds
the 10-fold cross-validations.

Table 2. Benchmark for “Car” dataset.

Algo Time (s) Examples used k Nodes acc.

DT1 684 173 - 23.67 55%
DT size 260 758 8 136 98.8%
DT depth 170 635 8 511 98.8%

DT3 44.8 1729 - 92 99.22%



Learning Optimal Decision Trees from Large Datasets 11

We can see in Table 2 that of the 1729 examples in the “Car” dataset, our
incremental approach uses less than half of it. Although this number is still
much higher than the number of examples used by the algorithm DT1, we can
see that our algorithms run faster. Moreover, since our algorithms ensure that
the resulting decision trees are consistent with all training examples, we can
see that the accuracy remains very high compared to the DT1 algorithm which
randomly considers only 10% of training examples. Note that the algorithm DT3
performs better that our algorithm but their algorithm is a heuristic that infers
a decision tree without any guarantee of optimality. In addition, because DT3
do not have an optimality constraint, it seek to minimize the number of nodes
of a general decision tree without constraint on the depth of the tree. This way,
DT3 find trees with fewer nodes, but deeper than ours.

5.3 Other datasets

As we mentioned in the introduction of the paper, there is a series of algorithms
that addresses a different but very similar problem to ours: inferring optimal
decision tree with a given depth such that the total classification error on the
training examples is minimized. In this section, we compare our results against
these algorithms. The datasets we use are extracted from the paper of Ver-
wer and Zhang [22] and are available at https://github.com/SiccoVerwer/binoct.
Each dataset corresponds to a 5-fold cross-validation. In their paper, Verwer and
Zhang compare their approach BinOCT ∗ to two other approaches. The first one
is CART [8], run from sciki-learn with its default parameter setting but with a
fixed maximum depth of the trees generated, and the second one is OCT from
Bertsimas and Dunn [5]. The time limit used is 10 minutes for BinOCT ∗ and
30 minutes to 2 hours for OCT . The depth of tree used is between 2 and 4, but
we report in Table 3 the best value among the three depths tried.

Table 3. Benchmark comparing algorithms DT depth, DT size, BinOCT ∗, CART
and OCT .

DT depth DT size BinOCT ∗ CART OCT
Dataset time (s) acc. k time (s) acc. n acc. acc. acc.

iris 0.012 97.9% 3 0.019 95.8% 10.6 98.4% 92.4% 93.5%
Monks-probl-1 0.016 89.0% 4.4 0.12 92.3% 17 87.1% 76.8% 74.2%
Monks-probl-2 0.18 68.4% 5.8 8.6 73.0% 47.8 63.3% 63.3% 54.0%
Monks-probl-3 0.02 78.7% 4.8 0.2 81.9% 23.4 93.5% 94.2% 94.2%

wine 0.6 88.4% 3 1.6 92.0% 7.8 92.0% 88.9% 94.2%
balance-scale 55 92.6% 8 350 92.6% 206 78.9% 77.5% 71.6%

Average 85.8% 87.9% 85.5% 82.18% 81.1%

It should be noted that only 6 of the 16 datasets present in the Verwer and
Zhang paper could be executed. The reason is that the decision trees consistent
with some datasets are too large and deep to be inferred. In contrast to the



12 Florent Avellaneda

algorithms to which we compare ours, we cannot set a maximum tree depth
value because all examples must be correctly classified by the tree we infer.

Note that in Table 3, our algorithms DT depth and DT size are very fast
even when the trees to be inferred are large. In fact, for the dataset “balance-
scale”, our algorithms infer decision trees of depth 8 in a few minutes while the
other algorithms require more time for trees of depth 4.

Concerning the accuracy of the trees we infer, it seems that when the depth
is small (< 5) accuracy is equal for all approaches. However, when the depth
becomes bigger, then our algorithms get higher accuracy. The most obvious
example is the dataset balance-scale where we get 92.6% accuracy compared to
78.9% for BinOCT ∗.

5.4 Artificial dataset

A last series of experimentations was carried out in order to see how the execution
times of our two algorithms changes with different parameters of the datasets.
The parameters we evaluate are the depth k of the tree to infer, the number f
of features, the number c of classes and the number n of training examples. In
order to perform the experiment, we randomly generate decision trees with the
characteristics of depths, number of features and number of classes desired, then
we randomly generate training examples from such trees. In Figures 2, 3, 4 and
5, we set three of these parameters and vary the remaining one to observe the
effect on execution time.

In Figure 2, time seems to grow linearly. The algorithm DT size appears to
have a coefficient of 1 which means that the fact that the algorithm is able to
infer a decision tree that contains several classes does not bring any gain (or
loss) in performance compared to the method consisting of inferring only deci-
sion trees with two classes and that would infer c decision trees (one for each
class). However, the algorithm DT depth has a coefficient lower than 1. Thus,
the algorithm’s ability to infer decision trees with multiple classes provides a
performance gain in this case. In Figure 3, time grows exponentially with k.
However, a tree has generally exponentially more nodes than the depth of the
tree. So, the figure indicates that the inference time increases almost polynomi-
ally with the number of nodes of the inferred tree. In Figure 4, time grows almost
exponentially with the number of features. It is thus the number of features that
seems to have the most impact on the inferring time. Then one way to improve
our method is to try to reduce this impact. In Figure 5, we observe that time is
growing rapidly until it reaches its peak. This peak corresponds to the number
of examples that the algorithm needs to infer a decision tree consisting with all
training examples. Thus, adding more examples will not affect the inference time
unlike the previous approaches using SAT solver.



Learning Optimal Decision Trees from Large Datasets 13

Number of classes

Ti
m

e 
(s

)

0

0,1

0,2

0,3

0,4

100 200 300 400 500

DT_size DT_depth

Fig. 2. Chart of the average time over
100 runs for k = 4 and f = 10.

Depth of the tree

Ti
m

e 
(s

)

0,01

0,1

1

10

100

3 4 5 6 7 8

DT_size DT_depth

Fig. 3. Chart of the average time over
100 runs for c = 2 and f = 10.

Time (s)

N
um

be
r o

f f
ea

tu
re

s

0,001

0,01

0,1

1

10

100

10 20 30 40 50

DT_size DT_depth

Fig. 4. Chart of the average time over
100 runs for c = 2 and k = 4.

Number of examples

Ti
m

e 
(m

s)
0

10

20

30

40

50 100 150 200

DT_size DT_depth

Fig. 5. Chart of the average time over
10000 runs for k = 4, c = 2 and f = 10.

6 Conclusion

We have presented a method that can infer an optimal decision tree for two
definitions of optimality. The first definition a decision tree of minimal depth
and consistent with the training examples is optimal. The second definition of
optimality adds the constraint that the tree, in addition to having a minimum
depth, must also have a minimum number of nodes. Although this optimal de-
cision tree inference problem is known to be NP-complete [11, 14], we proposed
an effective method to solve it.

Our first contribution is an effective SAT formulation that allows us to infer
perfect decision trees for a fixed depth consistent with training examples. We
have also shown how to add constraints in order to set the maximum number
of nodes. In this case, the inferred decision tree will no longer necessarily be a
perfect tree.

Our second contribution addresses the scalability issue. Indeed, the previ-
ous approach using SAT solver has the disadvantage that the execution time
increases significantly with the number of training examples [7, 16]. Thus, we
proposed an approach which does not process all the examples at once, instead
it does it incrementally. The idea of processing a set of traces incrementally is
to consider one example at a time, generate a decision tree and verify that it is
consistent with the remaining examples. If it is not, choose an example that is



14 Florent Avellaneda

incorrectly classified by the decision tree, i.e., a counterexample, and use it to
refine the decision tree.

We evaluated our algorithms using various experiments and compared the
execution time and quality of decision trees with other optimal approaches.
Experimental results show that our approach performs better than other ap-
proaches, with shorter execution times, better prediction accuracy and better
scalability. In addition, our algorithms have been able to process datasets for
which, to the best of our knowledge, there are no other inference methods able
of producing optimal models consistent with these datasets.

References

1. Ijcai workshop on explainable artificial intelligence. 2017.

2. Acm conference on fairness, accountability, and transparency. 2018.

3. Elaine Angelino, Nicholas Larus-Stone, Daniel Alabi, Margo Seltzer, and Cyn-
thia Rudin. Learning certifiably optimal rule lists. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pages 35–44. ACM, 2017.

4. Michal Bartnikowski, Travis J Klein, Ferry PW Melchels, and Maria A Woodruff.
Effects of scaffold architecture on mechanical characteristics and osteoblast re-
sponse to static and perfusion bioreactor cultures. Biotechnology and bioengineer-
ing, 111(7):1440–1451, 2014.

5. Dimitris Bertsimas and Jack Dunn. Optimal classification trees. Machine Learning,
106(7):1039–1082, 2017.

6. Dimitris Bertsimas and Romy Shioda. Classification and regression via integer
optimization. Operations Research, 55(2):252–271, 2007.

7. Christian Bessiere, Emmanuel Hebrard, and Barry O’Sullivan. Minimising decision
tree size as combinatorial optimisation. In International Conference on Principles
and Practice of Constraint Programming, pages 173–187. Springer, 2009.

8. Leo Breiman, Jerome H Friedman, Richard A Olshen, and Charles J Stone. Clas-
sification and regression trees. belmont, ca: Wadsworth. International Group, page
432, 1984.

9. Niklas Eén and Niklas Sörensson. An extensible sat-solver. In International con-
ference on theory and applications of satisfiability testing, pages 502–518. Springer,
2003.

10. Randy Goebel, Ajay Chander, Katharina Holzinger, Freddy Lecue, Zeynep Akata,
Simone Stumpf, Peter Kieseberg, and Andreas Holzinger. Explainable ai: the new
42? In International Cross-Domain Conference for Machine Learning and Knowl-
edge Extraction, pages 295–303. Springer, 2018.

11. Thomas Hancock, Tao Jiang, Ming Li, and John Tromp. Lower bounds on learning
decision lists and trees. Information and Computation, 126(2):114–122, 1996.

12. Simon Haykin. Neural networks, volume 2. Prentice hall New York, 1994.

13. Gordon V Kass. An exploratory technique for investigating large quantities of cate-
gorical data. Journal of the Royal Statistical Society: Series C (Applied Statistics),
29(2):119–127, 1980.

14. Hyafil Laurent and Ronald L Rivest. Constructing optimal binary decision trees
is np-complete. Information processing letters, 5(1):15–17, 1976.



Learning Optimal Decision Trees from Large Datasets 15

15. Oscar Li, Hao Liu, Chaofan Chen, and Cynthia Rudin. Deep learning for case-based
reasoning through prototypes: A neural network that explains its predictions. In
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

16. Nina Narodytska, Alexey Ignatiev, Filipe Pereira, Joao Marques-Silva, and IS RAS.
Learning optimal decision trees with sat. In IJCAI, pages 1362–1368, 2018.

17. J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.
18. Lior Rokach and Oded Z Maimon. Data mining with decision trees: theory and

applications, volume 69. World scientific, 2008.
19. Steven L Salzberg. C4. 5: Programs for machine learning by j. ross quinlan. morgan

kaufmann publishers, inc., 1993. Machine Learning, 16(3):235–240, 1994.
20. Michael Van Lent, William Fisher, and Michael Mancuso. An explainable artificial

intelligence system for small-unit tactical behavior. In Proceedings of the National
Conference on Artificial Intelligence, pages 900–907. Menlo Park, CA; Cambridge,
MA; London; AAAI Press; MIT Press; 1999, 2004.

21. Vladimir N Vapnik. The nature of statistical learning. Theory, 1995.
22. Sicco Verwer and Yingqian Zhang. Learning optimal classification trees using a

binary linear program formulation. In 33rd AAAI Conference on Artificial Intelli-
gence, 2019.



16 Florent Avellaneda

Appendix

Illustration of the inferring algorithm

We present here an illustration of the inferring algorithm of a decision tree
for depth 2. We use the following dataset E0 = {(false, false, true, false),
(false, false, false, true), (true, false, true, true), (true, true, true, false)} and
E1 = {(false, true, false, true), (false, true, true, false), (true, false, false, false),
(true, true, false, true)}
Initialization:

Formula (1): (¬F1,0 ∨ ¬F1,1) ∧ (¬F1,0 ∨ ¬F1,2) ∧ (¬F1,0 ∨ ¬F1,3)∧
(¬F1,1 ∨ ¬F1,2) ∧ (¬F1,1 ∨ ¬F1,3) ∧ (¬F1,2 ∨ ¬F1,3)∧
(¬F2,0 ∨ ¬F2,1) ∧ (¬F2,0 ∨ ¬F2,2) ∧ (¬F2,0 ∨ ¬F2,3)∧
(¬F2,1 ∨ ¬F2,2) ∧ (¬F2,1 ∨ ¬F2,3) ∧ (¬F2,2 ∨ ¬F2,3)∧
(¬F3,0 ∨ ¬F3,1) ∧ (¬F3,0 ∨ ¬F3,2) ∧ (¬F3,0 ∨ ¬F3,3)∧
(¬F3,1 ∨ ¬F3,2) ∧ (¬F3,1 ∨ ¬F3,3) ∧ (¬F3,2 ∨ ¬F3,3)

Formula (2): (F1,0 ∨ F1,1 ∨ F1,2 ∨ F1,3)∧
(F2,0 ∨ F2,1 ∨ F2,2 ∨ F2,3)∧
(F3,0 ∨ F3,1 ∨ F3,2 ∨ F3,3)

f1?

f0? f0?

1 1 1 1

false true

false true false true

Fig. 6. Conjecture

Add example: e0 = (0, 0, 1, 0) ∈ E0
Formula (3): (X0,0 ∨ ¬F1,2) ∧ (X0,0 ∨X0,1 ∨ ¬F2,2) ∧ (¬X0,0 ∨X0,1 ∨ ¬F3,2)

Formula (4): (X0,0 ∨ ¬X0,1 ∨ ¬F2,0) ∧ (X0,0 ∨ ¬X0,1 ∨ ¬F2,1)∧
(X0,0 ∨ ¬X0,1 ∨ ¬F2,3) ∧ (¬X0,0 ∨ ¬F1,0) ∧ (¬X0,0 ∨ ¬F1,1)∧
(¬X0,0 ∨ ¬F1,3) ∧ (¬X0,0 ∨ ¬X0,1 ∨ ¬F3,0)∧
(¬X0,0 ∨ ¬X0,1 ∨ ¬F3,1) ∧ (¬X0,0 ∨ ¬X0,1 ∨ ¬F3,3)

Formula (5): (X0,0 ∨X0,1 ∨ C0,0) ∧ (X0,0 ∨ ¬X0,1 ∨ C1,0)∧
(¬X0,0 ∨X0,1 ∨ C2,0) ∧ (¬X0,0 ∨ ¬X0,1 ∨ C3,0)

Formula (6): (X0,0 ∨X0,1 ∨ ¬C0,1) ∧ (X0,0 ∨ ¬X0,1 ∨ ¬C1,1)
(¬X0,0 ∨X0,1 ∨ ¬C2,1) ∧ (¬X0,0 ∨ ¬X0,1 ∨ ¬C3,1)



Learning Optimal Decision Trees from Large Datasets 17

f1?

f0? f0?

0 − − −

false true

false true false true

Fig. 7. Conjecture

Add example: e1 = (1, 0, 1, 1) ∈ E0
Formula (3): (X1,0 ∨ ¬F1,0) ∧ (X1,0 ∨ ¬F1,2) ∧ (X1,0 ∨ ¬F1,3)∧

(X1,0 ∨X1,1 ∨ ¬F2,0) ∧ (X1,0 ∨X1,1 ∨ ¬F2,2)∧
(X1,0 ∨X1,1 ∨ ¬F2,3) ∧ (¬X1,0 ∨X1,1 ∨ ¬F3,0)∧
(¬X1,0 ∨X1,1 ∨ ¬F3,2) ∧ (¬X1,0 ∨X1,1 ∨ ¬F3,3)

Formula (4): (X1,0 ∨ ¬X1,1 ∨ ¬F2,1) ∧ (¬X1,0 ∨ ¬F1,1)∧
(¬X1,0 ∨ ¬X1,1 ∨ ¬F3,1)

Formula (5): (X1,0 ∨X1,1 ∨ C0,0) ∧ (¬X1,0 ∨X1,1 ∨ C2,0)∧
(X1,0 ∨ ¬X1,1 ∨ C1,0) ∧ (¬X1,0 ∨ ¬X1,1 ∨ C3,0)

Formula (6): (X1,0 ∨X1,1 ∨ ¬C0,1) ∧ (X1,0 ∨ ¬X1,1 ∨ ¬C1,1)∧
(¬X1,0 ∨X1,1 ∨ ¬C2,1) ∧ (¬X1,0 ∨ ¬X1,1 ∨ ¬C3,1)

f1?

f0? f0?

0 0 − −

false true

false true false true

Fig. 8. Conjecture

Add example: e2 = (1, 1, 1, 0) ∈ E0
Formula (3): (X2,0 ∨ ¬F1,0) ∧ (X2,0 ∨ ¬F1,1) ∧ (X2,0 ∨ ¬F1,2)∧

(X2,0 ∨X2,1 ∨ ¬F2,0) ∧ (X2,0 ∨X2,1 ∨ ¬F2,1)∧
(X2,0 ∨X2,1 ∨ ¬F2,2)

Formula (4): (X2,0 ∨ ¬X2,1 ∨ ¬F2,3) ∧ (¬X2,0 ∨ ¬F1,3)∧
(¬X2,0 ∨ ¬X2,1 ∨ ¬F3,3)



18 Florent Avellaneda

Formula (5): (X2,0 ∨X2,1 ∨ C0,0) ∧ (X2,0 ∨ ¬X2,1 ∨ C1,0)∧
(¬X2,0 ∨X2,1 ∨ C2,0) ∧ (¬X2,0 ∨ ¬X2,1 ∨ C3,0)

Formula (6): (X2,0 ∨X2,1 ∨ ¬C0,1) ∧ (X2,0 ∨ ¬X2,1 ∨ ¬C1,1)∧
(¬X2,0 ∨X2,1 ∨ ¬C2,1) ∧ (¬X2,0 ∨ ¬X2,1 ∨ ¬C3,1)

f1?

f0? f0?

0 0 − 0

false true

false true false true

Fig. 9. Conjecture

Add example: e3 = (0, 1, 0, 1) ∈ E1
Formula (3): (X3,0 ∨ ¬F1,1) ∧ (X3,0 ∨ ¬F1,3)∧

(X3,0 ∨X3,1 ∨ ¬F2,1) ∧ (X3,0 ∨X3,1 ∨ ¬F2,3)∧
(¬X3,0 ∨X3,1 ∨ ¬F3,1) ∧ (¬X3,0 ∨X3,1 ∨ ¬F3,3)

Formula (4): (X3,0 ∨ ¬X3,1 ∨ ¬F2,0) ∧ (X3,0 ∨ ¬X3,1 ∨ ¬F2,2)∧
(¬X3,0 ∨ ¬F1,0) ∧ (¬X3,0 ∨ ¬F1,2)∧
(¬X3,0 ∨ ¬X3,1 ∨ ¬F3,0) ∧ (¬X3,0 ∨ ¬X3,1 ∨ ¬F3,2)

Formula (5): (X3,0 ∨X3,1 ∨ C0,1) ∧ (X3,0 ∨ ¬X3,1 ∨ C1,1)∧
(¬X3,0 ∨X3,1 ∨ C2,1) ∧ (¬X3,0 ∨ ¬X3,1 ∨ C3,1)

Formula (6): (X3,0 ∨X3,1 ∨ ¬C0,0) ∧ (X3,0 ∨ ¬X3,1 ∨ ¬C1,0)∧
(¬X3,0 ∨X3,1 ∨ ¬C2,0) ∧ (¬X3,0 ∨ ¬X3,1 ∨ ¬C3,0)

f1?

f0? f0?

0 0 1 0

false true

false true false true

Fig. 10. Conjecture

Add example: e4 = (1, 0, 0, 0) ∈ E1



Learning Optimal Decision Trees from Large Datasets 19

Formula (3): (X4,0 ∨ ¬F1,0) ∧ (X4,0 ∨X4,1 ∨ ¬F2,0) ∧ (¬X4,0 ∨X4,1 ∨ ¬F3,0)

Formula (4): (X4,0 ∨ ¬X4,1 ∨ ¬F2,1) ∧ (X4,0 ∨ ¬X4,1 ∨ ¬F2,2)∧
(X4,0 ∨ ¬X4,1 ∨ ¬F2,3) ∧ (¬X4,0 ∨ ¬F1,1) ∧ (¬X4,0 ∨ ¬F1,2)∧
(¬X4,0 ∨ ¬F1,3) ∧ (¬X4,0 ∨ ¬X4,1 ∨ ¬F3,1)∧
(¬X4,0 ∨ ¬X4,1 ∨ ¬F3,2) ∧ (¬X4,0 ∨ ¬X4,1 ∨ ¬F3,3)

Formula (5): (X4,0 ∨X4,1 ∨ C0,1) ∧ (X4,0 ∨ ¬X4,1 ∨ C1,1)∧
(¬X4,0 ∨X4,1 ∨ C2,1) ∧ (¬X4,0 ∨ ¬X4,1 ∨ C3,1)

Formula (6): (X4,0 ∨X4,1 ∨ ¬C0,0) ∧ (X4,0 ∨ ¬X4,1 ∨ ¬C1,0)∧
(¬X4,0 ∨X4,1 ∨ ¬C2,0) ∧ (¬X4,0 ∨ ¬X4,1 ∨ ¬C3,0)

f0?

f1? f2?

0 1 1 0

false true

false true false true

Fig. 11. Final Solution


	Learning Optimal Decision Trees from Large Datasets

