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Abstract. Checking the structural boundedness and the structural termination

of vector addition systems with states boils down to detecting pathological cy-

cles. As opposed to their non-structural variants which require exponential space,

these properties need polynomial time only. The algorithm searches for a counter-

example in the form of a multiset of arcs computed by means of linear program-

ming. Yet the minimal length of a pathological cycle can be exponential in the

size of the system which makes it difficult to visualize and to analyze the de-

tected bug in details. Further minimizing the length or the number of distinct arcs

in pathological paths is NP-hard.
In this paper we propose to represent pathological cycles in the form of a multiset

of particular cycles called wings. We present an algorithm that builds in poly-

nomial time a multiset of wings with a common starting point from the multiset

of arcs that represents a pathological cycle. Interestingly the number of distinct

wings we need is at most equal to the dimension of vectors which helps to de-

scribe in a concise way the underlying bug and to analyse it.
Next we tackle the problem of computing a pathological multiset built over wings

with a bounded length. We show how to solve this problem in polynomial time

by a reduction to a linear program using a separation algorithm.

1 Introduction

Consider a set of reactions that takes place among a collection of particles such that each

reaction consumes a multiset of available particles and produces a linear combination

of other particle types. This kind of framework can be formalized by a vector addition

system [10] or, equivalently, a (pure) Petri net. In this case, particles are called tokens

and particle types are called places. Consider in addition a control state that determines

which reactions can occur, and such that the occurrence of a reaction leads to a possibly

distinct control state. Then the model becomes formally a vector addition system with

states (a VASS), a notion introduced in [8]. Checking reachability properties of these

systems is equivalent to checking a Petri net using a well-known and simple simulation

technique. In this paper we are interested in two structural properties for VASS, that

is, properties that do not depend on a particular initial distribution of particles among

places. In this way, we consider the initial marking as a parameter of the system. In-

terestingly, we give an example that shows that the usual simulation of a VASS by a

Petri net does not preserve these properties in general. As a consequence, the analysis

of structural properties of Petri nets by a reduction to linear programming [14, 16, 17]

does not apply to the framework of VASS.

The first problem we consider asks whether the number of particles in the system

remains bounded for each initial configuration. In other words only finitely many dis-

tinct configurations can be reached. Since particles often represent the consumption of



resources, such as messages in channels, this first problem asks whether there exists

some amount of resources sufficient to cope with all configurations reachable from any

fixed finite set of potential initial configurations. A second basic issue is to check that a

given system terminates, i.e. whether there is no infinite execution, for each initial con-

figuration. Thus we aim at checking that a system eventually deadlocks. Although one

usually tries to avoid deadlocks in concurrent systems, termination remains in some

cases a basic problem in formal verification: In particular non-termination can result

from livelocks in concurrent programs when components fail to achieve their tasks.

Verifying the structural boundedness or the structural termination of a given VASS

boils down to checking the costs of cycles within the system viewed as a weighted

directed graph: A cycle is pathological for structural boundedness (resp. structural ter-

mination) if its arc weights sum to a positive (resp. non-negative) vector. Consequently

these two problems are very close to the detection of a zero-cycle in dynamic graphs [9],

which asks if there exists a cycle with a zero cost. In [11] Kosaraju and Sullivan showed

how to decide the existence of such a cycle in polynomial time. Besides this problem

was proved later to be equivalent to the general linear programming problem [4]. The

idea is twofold. First cycles are identified with particular multisets of arcs. Second mul-

tisets of arcs with zero cost appear as solutions to some linear program. This technique

adapts easily to the detection of pathological cycles for structural boundedness or struc-

tural termination. The resulting algorithm returns in polynomial time a multiset of arcs

that represents a pathological cycle if such a cycle exists.

Structural properties consider systems with an arbitrary initial configuration. How-

ever, they can be checked for systems provided with an initial configuration, because

a structurally bounded (resp. structurally terminating) system is bounded (resp. termi-

nating) for any initial configuration. This abstraction approach can prove to be useful

because the non-structural variants require both exponential space [2, 13]. In this direc-

tion, we give in Section 2.3 an example that shows that it can be appropriate in some

cases to split the set of places into two parts: The places that are known to be bounded

for the given initial marking and those that are considered to have no specific initial

content. One can then unfold the system into a new system in which the former places

are encoded within control states and the remaining places are checked for structural

properties. When the property is not satisfied, the analysis of a computed pathological

cycle is necessary to detect a false counter-example, that is to say, to verify the validity

of the abstraction.

When the model of a system does not satisfy a given property, formal verification

tools usually provide users with a counter-example execution in the form of a sequence

of atomic steps that describes an unexpected behaviour. In this paper, we tackle the

problem of providing a useful description of a pathological cycle for a structural prop-

erty. The point is that the number of times an arc occurs in a pathological cycle can be

exponential in the size of the given VASS, even though the time needed to compute the

corresponding multiset of arcs is only polynomial. Consequently listing the sequence

of arcs occurring along such a cycle is prohibitive in general. A first approach consists

in providing a partial description of the detected pathological cycle as the set of all arcs

occurring in this cycle —or simply the set of places interacting in the reactions per-



formed by these arcs. However, this information may not be sufficient to understand

fully the detected bug.

In the particular case of a VASS with a single state —that is to say: a pure Petri net—

a multiset of arcs can be regarded as a multiset of cycles with a common starting state.

Moreover, due to Carathéodory’s theorem [15, Cor. 7.7i], we need at most p distinct arcs

to describe a structural bug if the given VASS has p places. Then each pathological cycle

is decomposed into p elementary cycles of length 1 and with a common starting state.

In this work, we want to extend this property to any VASS: We aim at decomposing

a given pathological cycle in the form of a multiset of particular cycles starting from

a common fixed state. Moreover each component cycle should be easy to depict and

the number of distinct cycles in this multiset should be at most equal to the number of

places in the given VASS.

We introduce in Section 3 a class of particular cycles, called wings, that are used as

component cycles for the decomposition of a pathological cycle. Roughly speaking, a

wing consists of a cycle provided with two paths back and forth from a fixed starting

state to some particular state within the cycle. We require that the length of the three

component paths of a wing is at most equal to the number of states in the given VASS.

Actually we will often consider simple wings, that is, wings whose component paths are

simple paths. Additionally, the valuation of a wing determines the number of iterations

of its cyclic component. Indeed we can describe a wing to the user of a verification tool

by listing the sequence of arcs of its three component paths and giving its valuation.

Our first main result is established in Section 4. We show how to compute in poly-

nomial time a multiset of simple wings with a common starting state that corresponds

to a given multiset of arcs that represents a pathological cycle. Moreover the num-

ber of distinct simple wings we need is at most equal to the number of places. Thus

we propose to describe a structural bug to the user in the form of a small number of

wings together with the number of times each wing occurs. Note that this information

allows us to compute the minimal configuration required to execute the pathological

cycle resulting of the iteration of each wing in some arbitrary order. This information is

useful to the user when structural properties are checked instead of their non-structural

variants, if the abstraction process yields a false counter-example. Then the analysis

of the detected pathological cycle can lead to a refined model with a reduced set of

non-initialized places.

Finding shortest counter-examples is often desirable in automated verification, be-

cause they are easier to analyse, see e.g. [3, 12]. Unfortunately, searching for a patho-

logical cycle built over a minimal number of arcs, or a minimal number of interacting

places, is NP-hard (Prop. 18 and 19). Yet we show in Section 5 that we can minimize in

polynomial time the length of the component paths in wings used to describe a patho-

logical path. To do so, we fix a starting state q and a natural number ℓ and we focus

on wings starting from q whose component paths have a length at most ℓ. By means of

an encoding in linear programming and a separation algorithm, we show how to decide

whether there exists a pathological multiset of such wings, and if so, to compute one

(Theorem 23). In the rest of this paper, we focus on structural termination for simplic-

ity’s sake. However, all results adapt easily to structural boundedness.
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Fig. 1. A vector addition system with states

2 Background

Let p be a fixed non-zero natural number. A vector addition system with states is simply

a directed graph whose arcs are labeled by vectors from Zp.

Definition 1. [8] A vector addition system with states (for short, a VASS) is a pair

S = (Q,A) where Q is a finite set of states, and A ⊆ Q× Zp ×Q is a finite set of arcs

labeled by vectors from Zp.

Throughout the paper we let S = (Q,A) be a VASS. We let |Q| and |A| denote the

cardinalities of Q and A respectively. The source and the target of a labeled arc a ∈ A
are denoted by dom(a) and cod(a) respectively. We let cost(a) ∈ Zp denote the column

vector labeling each arc a ∈ A. The size of a VASS S = (Q,A) is size(S) = |A|× (2×
⌈log2(|Q| + 1)⌉ + p × (1 + ⌈log2(1 + vmax)⌉)) where vmax is the maximal absolute

value of coefficients of vectors labeling arcs in S.

2.1 Basics and Notations

Let S = (Q,A) be a VASS. A path is a sequence of arcs γ = a1...an ∈ A⋆ such that

we have dom(ai+1) = cod(ai) for each i ∈ [1..n − 1]. A path γ = a1...an ∈ A⋆ is

closed if n > 1 and dom(a1) = cod(an). A closed path is called a cycle. A path γ =
a1...an ∈ A⋆ is simple if dom(ai) 6= dom(aj) for all distinct i, j. A circuit is a simple

and closed path. The cost of a path γ = a1...an is the vector cost(γ) =
∑i=n

i=1 cost(ai).
Further the cost of a multiset of arcs x ∈ NA is cost(x) =

∑

a∈A x[a] · cost(a) and the

cost of a finite multiset of paths F is cost(F) =
∑

γ∈A⋆ F [γ] · cost(γ). Let v and v′ be

two integral vectors with n coordinates: v = (v[1], ..., v[n]) and v′ = (v′[1], ..., v′[n]).
We put as usual v > v′ if v[i] > v′[i] for each i; v > v′ if v[i] > v′[i] for each i; and

v  v′ if v > v′ and v 6= v′.
A configuration is a pair (q, r) ∈ Q×Np consisting of a control state q and a multiset

of available particles r. A labeled arc a ∈ A is enabled at the configuration (q, r) and

leads to the configuration (q′, r′) if dom(a) = q, cod(a) = q′, and r + cost(a) =
r′. An execution of S from an initial configuration (qin, rin) is a sequence of labeled

arcs a1...an ∈ A⋆ such that there are configurations (q0, r0), ..., (qn, rn) for which

(q0, r0) = (qin, rin) and for each i ∈ [1..n], the labeled arc ai is enabled at (qi−1, ri−1)
and leads to (qi, ri). Then the configuration (qn, rn) is reachable from (qin, rin).

In this paper we are mainly interested in checking the structural termination of a

given VASS: We want to verify that for each initial configuration (qin, rin) the length of

executions from (qin, rin) is bounded. It is easy to observe with the help of Dickson’s

lemma [10, Lemma 4.1] that this property is equivalent to the condition that there exists

no cycle γ with cost(γ) > 0. Thus we aim at detecting pathological cycles in S.



Definition 2. A cycle γ in a VASS S is pathological if cost(γ) > 0.

Example 3. Along this paper, we shall use as a running example the 2-dimensional

VASS depicted in Figure 1 with three states q0, q1, and q2 and five weighted arcs a1,

a2, a3, l1, and l2. The cost of the cycle γ = a1.l
5
1.a2.l

3
2.a3 is cost(γ) = (1, 4)⊤. So this

cycle is pathological.

2.2 Multisets of Arcs vs. Cycles

We shall represent cycles of a VASS S as particular multisets of arcs. Let x ∈ NA be a

multiset of arcs. We denote by ||x|| = |{a ∈ A | x[a] > 1}| the number of distinct arcs in

x and byAx the support of x, that is to say the set of arcs a ∈ A such that x[a] > 1. Thus

||x|| = |Ax|. The underlying graph Gx of x is the (undirected) graph Gx = (Qx, Ex)
where the set of vertices Qx = {dom(a) | a ∈ Ax} ∪ {cod(a) | a ∈ Ax} collects the

source and the target of all arcs in x and the set of edges Ex = {{dom(a), cod(a)} | a ∈
Ax and dom(a) 6= cod(a)} keeps track of all connections induced by arcs in x.

A multiset of arcs x ∈ NA is called connected if Gx is a connected graph. Let

x ∈ NA and C1, ..., Cn ⊆ Qx be the connected components of Gx. For each 1 6 i 6 n
and each a ∈ A, we put xi[a] = x[a] if dom(a) ∈ Ci and xi[a] = 0 otherwise. Then

x = x1+...+xn and the multisets xi ∈ NA are called the connected components of x. A

multiset of arcs x is called Eulerian if for each state q ∈ Q the number of arcs incident

from q equals the number of arcs incident to q, i.e.
∑

dom(a)=q x[a] =
∑

cod(a)=q x[a].
A connected and Eulerian multiset of arcs is called a circulation. Note that if x and y
are Eulerian, then x + y is Eulerian. If moreover x 6 y then y − x is Eulerian, too.

The multiplicity of a non-zero multiset x ∈ NA \ {0} within a multiset y ∈ NA is the

greatest natural number k such that k · x 6 y.

Each cycle γ = a1...an of S is represented by the multiset of arcs xγ =
∑i=n

i=1 ai,
i.e. xγ [a] is the number of occurrences of a in γ. Since γ is a cycle, the multiset of

arcs xγ is non-empty, Eulerian and connected. For instance, continuing Example 3, the

multiset of arcs a1+a2+a3+5 · l1+3 · l2 is the circulation corresponding to the cycle

γ = a1.l
5
1.a2.l

3
2.a3. Conversely, each non-empty circulation corresponds to a cycle of

S: This is an immediate variant of Euler’s theorem [5, Th. 1.8.1].

Proposition 4. Let x ∈ NA be a non-empty circulation. Then there exists a cycle γ
such that xγ = x.

In [11], Kosaraju and Sullivan showed how to detect a cycle with a zero cost in

polynomial time. Basically their algorithm searches for a non-empty circulation with a

zero cost recursively by alternatively solving homogeneous linear programs and com-

puting strongly connected components. It is straightforward to adapt this technique to

the detection of pathological cycles. In fact it is sufficient to replace a vector equality

x = 0 by x > 0 in part of the linear programs considered. Moreover we can require

that the resulting algorithm returns a circulation that represents a pathological cycle if

such a cycle exists. Note here that this algorithm remains polynomial although it does

not boil down to solving a linear program as in the particular case of a Petri net [17].
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Fig. 2. A terminating Petri net Fig. 3. A structurally terminating VASS

2.3 Semi-Structural Properties of Petri Nets

When modeling a message-passing system as a Petri net, one often distinguishes two

types of places:

– control places whose bounded marking describes the current global state;

– container places whose tokens represent pending messages.

It may be then interesting to check termination for a fixed initial marking of control

places but an arbitrary initial marking of container places. In this way, semi-structural

termination generalises both termination and structural termination by specifying a sub-

set of places with an arbitrary initial marking.

A simple approach allows us to check semi-structural termination. First we erase the

container places and check that the resulting Petri net is bounded. Next we build the cor-

responding finite marking graph viewed as a VASS and re-incorporate the constraints

of container places. If the resulting VASS is structurally terminating, then the original

Petri net is semi-structurally terminating, i.e. it terminates for any initial marking of

its container places. Recall that checking termination of a Petri net requires exponen-

tial space [17] whereas we can check structural termination of a VASS in polynomial

time. Thus, considering semi-structural termination of a Petri net and hence structural

termination of a VASS can turn out to be efficient to check that a Petri net terminates.

Example 5. Consider the currency change Petri net depicted in Fig. 2. The container

places E andD collect euros and dollars respectively. An additional token walks around

between the two control places EU and USA. When the control token is in EU then eu-

ros can be changed into dollars, and conversely if the control token is in USA then

dollars can be changed into euros. Moving from EU to USA (resp. from USA to EU)

requires to pay a tax in dollars (resp. in euros). This Petri net is not structurally termi-

nating because currency can circulate between euros and dollars provided that there is

a token in both control places EU and USA. However, the resulting unfolded VASS,

depicted in Fig. 3, consists of two states and is obviously structurally terminating. Thus

the currency change Petri net from Fig. 2 terminates for any initial amount. Note that

the usual Petri net associated with the VASS from Fig. 3 is precisely the Petri net from

Fig. 2. Therefore the classical simulation of a VASS by a Petri net does not preserve

structural termination.



3 Representation of a Circulation by a Multiset of Cycles

3.1 Exponential Length of Minimal Pathological Cycles

The algorithm to detect pathological paths can provide us with a circulation that corre-

sponds to a pathological cycle. Moreover the size of the natural coefficients of such a

circulation is polynomial. In order to help the understanding of a structural bug detected

in the form of a circulation, it is useful to represent this counter-example as a patholog-

ical cycle. Then the length of this pathological cycle equals the sum of the circulation

coefficients. Consequently the minimal length of the resulting cycle can be exponential

in the size of the VASS as illustrated by the next example.

Example 6. Consider the VASS with a single state and six arcs labeled by the six fol-

lowing 6-dimensional vectors:

t1 =
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It is easy to see that each pathological cycle needs all arcs because of their pairwise

dependencies. Moreover a pathological cycle that contains one occurrence of t6 needs

2 occurrences of t5, 4 occurrences of t4 and hence 4 occurrences of t3, 2 occurrences of

t2 and one occurrence of t1. Therefore the pathological cycle γ = t1+2 · t2+4 · t3+4 ·
t4 + 2 · t5 + t6 has a minimal length. We can easily generalize this example to a VASS

made of 2×m arcs whose pathological cycles have a length greater than 2× (2m − 1).

Thus listing the sequence of arcs occurring along a pathological cycle is prohibitive.

For that reason we need to design a compact representation of pathological cycles.

3.2 Looking for a Format

It is clear that a pathological cycle γ (or a circulation) can be decomposed into a multiset

F of circuits with cost(F) = cost(γ). Then Caratheodory’s theorem [15, Cor. 7.7i]

allows us to compute a multiset F ′ over at most p circuits (where p stands for the

dimension of vectors) such that cost(F ′) = m·cost(γ) for some m ∈ N\{0}. However,

the connectedness of the underlying set of arcs may be lost at this point, that is, F ′ does

not represent a pathological cycle any longer.

A natural idea is to use an additional connecting cycle on which the component

circuits would hang. In other words it would be nice to find

– a sequence of circuits σ0, . . . , σk−1, with k 6 p,

– a sequence of fixed connection states q0, . . . , qk−1 with qi ∈ Qσi

– a connecting cycle w0 . . . wk−1, where wi is a simple path from qi to qi+1 (mod k),

– and a sequence n0, . . . , nk−1 of natural numbers
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Fig. 4. Counter-example

such that the cycle γ′ = σn0

0 w0σ
n1

1 . . . σ
nk−1

k−1 wk−1 satisfies cost(γ′) = m · cost(γ)
for some m ∈ N \ {0}. Example 3 shows that in some cases pathological circulations

can effectively be decomposed in this way. However, till now, it remains open whether

it exists such a pathological cycle for every non structurally terminating VASS. For

that reason, we consider in the sequel of this paper another kind of representation for

pathological circulations. Before that, we would like to stress that we cannot require ad-

ditionally that the connecting cycle w0.w1 . . . wk is simple, as the next example shows.

Example 7. Consider the 2-dimensional VASS with 5 states from Fig. 4. Each patho-

logical cycle in this VASS makes use of each arc. Such cycles cannot be decomposed

in the above considered form with a simple connecting cycle.

3.3 From Multisets of Arcs to Multisets of Wings

At present we propose to describe pathological cycles of a VASS in the form of a mul-

tiset of particular cycles called wings. Roughly speaking, a wing with valuation k is a

cycle which consists of k iterations of a circuit plus a path back and forth from one state

of the circuit to some fixed starting state. This shared starting state will ensure that a

multiset of wings remains connected.

Definition 8. Let q, q′ ∈ Q be two states of S. Let γ0 be a cycle of S starting from q′.
Let γ1 be a path from q to q′ and γ2 be a path from q′ to q. Let k ∈ N. We assume that

the length of each path γ0, γ1 and γ2 is at most equal to the number of states |Q|. Let

W = γ1.γ
k
0 .γ2 be the cycle which starts from q and which consists of γ1, followed by k

iterations of the cycle γ0, followed by γ2. Then W is called a wing of S with valuation

k. A wing is said to be simple if its three component paths γ0, γ1, and γ2 are simple.

A simple wing is often represented by a multiset of arcs W = D+k ·C where C is

the set of arcs occurring in the cycle γ0 while D is the multiset of arcs occurring in γ1
and γ2. Then the multiset W is connected and Eulerian. Note that the path γ1.γ2 from

q to q in a simple wing need not be simple (nor non-empty). However, each arc occurs

at most twice in γ1.γ2.

Example 9. We continue Example 3 with p = 2. We have observed that the cost of

the cycle γ is cost(γ) = (1, 4)⊤. Consider the two simple wings W1 = a1.l
10
1 .a2.a3

with valuation 10 and W2 = a1.a2.l
6
2.a3 with valuation 6. Noteworthy 2 · cost(γ) =

cost(W1)+cost(W2). This equality illustrates precisely how simple wings can represent

a cycle up to a scalar multiplication factor of its cost.

Our first result asserts that there exists such a representation by wings with a shared

starting state for any pathological circulation.



Theorem 10. Let Ĥ be a non-empty circulation and q̂ ∈ Q
Ĥ

. There exists a non-empty

multiset F of simple wings starting from q̂ such that cost(F) = m · cost(Ĥ) for some

m ∈ N \ {0}; moreover F is built over at most p distinct wings.

The next section is devoted to the proof of Theorem 10. The factor m is necessary to

make sure that the simple wings obtained share the common starting state q̂ and hence

to get an obvious cycle made of this multiset of wings. This factor m is not a drawback

of this approach because we search for pathological cycles and moreover the actual

length of the resulting pathological cycle is not relevant. It allows us also to ensure

additionally that F is built over of at most p distinct wings.

4 Construction of Representative Wings from a Circulation

In this section we fix a non-empty circulation Ĥ ∈ NA and a state q̂ ∈ Q
Ĥ

. We show

how to compute in polynomial time a non-empty multiset F of simple wings starting

from q̂ such that cost(F) = m · cost(Ĥ) for some m ∈ N \ {0}.

The construction of F proceeds inductively over the size of A
Ĥ

. At each step, a

wing W = D + k · C 6 Ĥ with valuation k is added to F and removed from Ĥ until

Ĥ is empty. This wing should satisfy the three following properties:

1. Some arc in the cyclic component C has multiplicity k within Ĥ ; in this way, at

least one arc is removed from the support of Ĥ at each step: ||Ĥ −W || < ||Ĥ ||.
2. The Eulerian multiset of remaining arcs Ĥ −W is connected; this ensures that we

can proceed recursively.

3. The fixed state q̂ belongs to the new circulation Ĥ−W , so that all wings share this

common starting state —except of course if Ĥ −W is already empty.

The first idea for the search of such a wing W within Ĥ is that it is sufficient to find a

circuit C satisfying these conditions. This leads us to the following central notion of an

adequate circuit.

Definition 11. Let H ∈ NA be a non-empty circulation and q0 ∈ QH . A circuit C with

multiplicity k > 1 in H is adequate for H and q0 if it satisfies the two next conditions:

– the multiset of arcs H − k · C is connected;

– if H − k · C is not empty then QH−k·C contains q0.

Example 12. Continuing Example 3, we consider the circulation H = a1 + a2 + a3 +
5 · l1 + 3 · l2 for the VASS depicted in Figure 1. Then the two circuits l1 and l2 are

adequate for H and q0 whereas the circuit a1.a2.a3 is not.

Note that ||H − k · C|| < ||H || for any circuit C with multiplicity k in H . The

construction of F relies on two independent algorithms presented in the two next sub-

sections. The first algorithm shows how to find an adequate circuit for any non-empty

circulation H ∈ NA and any state q̂ ∈ QH . The second one is much easier. It explains

how to build the expected multiset F of wings with the help of adequate circuits as

inputs.
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4.1 Finding an Adequate Circuit in a Circulation for a Fixed State

The search for a circuit C adequate for H and q0 proceeds non-deterministically and

inductively over the number of arcs in AH . Each step distinguishes two main cases.

The simpler case assumes that all circuits within H contain q0. Then each circuit is

adequate for H and q0. The reason is that any connected component of the Eulerian

multiset H − k · C contains a circuit, and hence contains q0.

The more interesting case considers that there exists a circuit C 6 H that does not

contain q0. Let k be the multiplicity of C within H . Then q0 ∈ QH−k·C because q0
does not occur in C. Hence H − k · C is not empty. Then the circuit C is adequate if

H − k · C is connected. In this case, the search is terminated. Otherwise we consider a

connected component H ′ of H − k ·C that does not contain q0, as illustrated in Fig. 5.

We will show how to find in H ′ a circuit C′, with multiplicity k′ in H ′, such that

1. at least one arc a ∈ AC′ \ AC satisfies H ′[a] = k′. Then H ′[a] = H [a] and k′ is

also the multiplicity of a in H ; hence ||H − k′ · C′|| < ||H ||.
2. each connected component of H ′−k′ ·C′ contains a state from C. Then H−k′ ·C′

is connected; moreover q0 ∈ QH−k′·C′ because q0 does not occur in H ′.

It follows that C′ is adequate for H and q0.

The search for an appropriate circuit C′ within H ′ is regarded as a generalisation of

the search for an adequate circuit C within H where the connectivity of H − k · C is

replaced by the connectivity of H ′ − k′ ·C′ if one incorporates the circuit C. Actually,

for simplicity’s sake, we will consider at this point a simple path σ made of all but one

arcs from C. Intuitively, σ will play the role of C. However we shall also consider a

special case where σ is the empty path to deal with adequate circuits.

Definition 13. Let H ∈ NA be a non-empty circulation, q0 ∈ QH , and σ ∈ A⋆ be a

simple path. A circuit C with multiplicity k > 1 in H is appropriate for H and (q0, σ)
if it satisfies the two next conditions:

1. there exists an arc a ∈ AC \Aσ such that H [a] = k;

2. each connected component of H − k · C contains a state from Qσ ∪ {q0}.

Observe that a circuit C is appropriate for H and (q0, ǫ) where ǫ denotes the empty

path (Def. 13) if, and only if, it is adequate for H and q0 (Def. 11). For that reason, the

search for an adequate circuit will simply ask for an appropriate circuit w.r.t. the empty

path ǫ in Algorithm 2 below.

We present now in Algorithm 1 a way to compute circuits appropriate for H and

(q0, σ), provided that σ is not a circuit and q0 ∈ Qσ if σ is not empty.



Algorithm 1 AppropriateCircuit(H, q0, σ)

Require: H ∈ NA is a non-empty circulation.

Require: σ is a simple path consisting of arcs from A and such that σ is not a circuit.

Require: q0 ∈ QH and q0 ∈ Qσ if the path σ is non-empty.

if all circuits C 6 H satisfy QC ∩ (Qσ ∪ {q0}) 6= ∅ then

Let b ∈ AH \ Aσ

β ← b # Initially β is a path of length 1

while β contains no circuit do

if there exists some arc b′ ∈ AH \Aσ with dom(b′) = cod(b) then

Choose some b′ ∈ AH \Aσ with dom(b′) = cod(b)
else

Choose some b′ ∈ AH ∩Aσ such that dom(b′) = cod(b)
end if

b← b′

Add the arc b to the end of the path β

end while

return a circuit C within β

else

Let C 6 H be such a circuit such that QC ∩ (Qσ ∪ {q0}) = ∅
Let k be the multiplicity of C in H

if each connected component of H − k · C contains a state from Qσ ∪ {q0} then

return C # In particular if H = k · C.

else

Let H ′ be a connected component of H − k · C with QH′ ∩ (Qσ ∪ {q0}) = ∅.
Let q′0 be a state from QH′ ∩QC and a be an arc from AC with H [a] = k.

Let σ′ be the path made of all arcs from AC \ {a}
return AppropriateCircuit(H ′, q′0, σ

′) # Then ||H ′|| < ||H ||
end if

end if

Proposition 14. Let H ∈ NA be a circulation. Let q0 ∈ QH and σ ∈ A⋆ be a simple

path such that q0 ∈ Qσ if σ is not empty. Provided that σ is not a circuit, Algorithm 1

returns a circuit that is appropriate for H and (q0, σ).

Assume that H ∈ NA is a non-empty circulation and σ = a1...an is a simple path

consisting of arcs from A such that σ is not a circuit. Let q0 ∈ QH be a state of H such

that q0 ∈ Qσ if σ is non-empty. Searching for an appropriate circuit C for H and (q0, σ)
is slightly more involved than searching for an adequate one. However, Algorithm 1

proceeds similarly to the above discussion and distinguishes two main cases.

We need first to determine whether all circuits in H contain a state from Qσ ∪{q0}.

To do so, one considers the subset A′ ⊆ A consisting of all arcs from AH whose

source and target do not belong to Qσ ∪ {q0}. Let A′
1,..., A′

n be the strongly connected

components of A′. Then there exists a circuit C in H with QC ∩ (Qσ ∪ {q0}) = ∅ if,

and only if, A′ contains a self-loop arc or one of the strongly connected components A′
i

has two states. Depending on whether this condition is satisfied, we investigate one of

the following two cases:



1. We assume first that all circuits in H contain a state from Qσ ∪ {q0}. Algorithm 1

builds a circuit C = a0a1...an−1 in H using preferably arcs that do not appear

in σ. Since σ is not a circuit and H is a non-empty circulation, we can choose an

arbitrary arc b ∈ AH \Aσ and consider first the path β = b. This path is extended

iteratively by adding arcs from AH to the end of β until β contains a circuit C. At

each iteration, there are potential candidates to complete β because H is Eulerian.

However, we require that arcs from AH \ Aσ are preferred to the others in this

extension process. Clearly this loop terminates after at most |QH | iterations. At

this point, we claim that C is appropriate for H and (q0, σ).

Proof. Let k > 1 be the multiplicity of C in H . Since H is Eulerian, H − k · C is

Eulerian. Let H ′ be a connected component ofH−k·C. Since H−k·C is Eulerian,

H ′ is Eulerian. Therefore there is some circuit in H ′ and hence H ′ contains a state

from Qσ ∪{q0}. Thus, all connected components of H − k ·C contain a state from

Qσ ∪ {q0}.

Since the simple path σ is not closed, the circuit C within β cannot be made of arcs

from σ only. In other words, C contains at least one arc that does not belong to Aσ .

Assume that there is an arc ai ∈ Aσ ∩ AC . Due to the priority of arcs adopted, the

arc ai is the single arc with dom(ai) = cod(ai−1 (mod n)). Since H is Eulerian,

we have H [ai−1 (mod n)] 6 H [ai]. Since C contains at least one arc that does not

belong to Aσ , there exists an arc a ∈ AC \ Aσ such that H [a] 6 H [ai]. It follows

that there exists a ∈ AC \Aσ such that H [a] is equal to the multiplicity C in H .

2. We assume now that there exists some circuit C in H with QC ∩ (Qσ ∪{q0}) = ∅.

Let k > 1 be the multiplicity of C in H . If each connected component of H−k ·C
contains at least one state from Qσ ∪ {q0} then C is appropriate for H and (q0, σ).
Therefore we assume now that H − k ·C is non-empty and admits some connected

component H ′ of H − k · C that contains no state from Qσ ∪ {q0}. Let a ∈
AC be such that H [a] = k. Then H ′[a] = 0 and hence ||H ′|| < ||H ||. Moreover

QH′∩QC 6= ∅, otherwise there would be no path fromQH′ to QC in the circulation

H . We fix some state q′0 ∈ QH′ ∩QC . We let also σ′ denote the simple path made

of all arcs from AC \ {a}. Then σ′ contains all arcs from AC ∩ AH′ . Moreover σ′

is not a circuit and q′0 ∈ Qσ′ as soon as σ′ is not empty. At this point we claim that

any circuit C′ appropriate for H ′ and (q′0, σ
′) is also appropriate for H and (q0, σ).

Proof. The situation is illustrated in Fig. 6. Let k′ > 1 be the multiplicity of C′ in

H ′. Then,

– Each connected component of H ′ − k′ · C′ contains a state from Qσ′ ∪ {q′0}.

– There exists an arc a′ ∈ AC′ \Aσ′ such that H ′[a′] = k′.

Since σ′ contains all arcs from C that occur in H ′, we have a′ /∈ AC . Therefore

H [a′] = (H − k · C)[a′] = H ′[a′] = k′. It follows that k′ is also the multiplicity

of C′ in H . Since H ′ contains no state from Qσ ∪ {q0}, C′ contains no state from

Qσ ∪ {q0} either. Further, we have a′ ∈ AC′ \Aσ . Since q0 ∈ H and q0 /∈ H ′, q0
appears in H − k′ · C′. To conclude the proof, we show simply that H − k′ · C′ is

connected.

Since H − k · C > k′ · C′, we have H − k′ · C′ > k · C > C. Thus all states

of QC are strongly connected to each other in H − k′ · C′. Let q′′ ∈ QH−k′·C′ .

It remains to show that there exists a path from q′′ to a state from C made of arcs



from H − k′ · C′. The claim is trivial if q′′ ∈ QC . If q′′ /∈ QC then q′′ belongs to

one of the connected components of H − k · C. We distinguish two cases:

– q′′ ∈ QH′ . Since q′′ ∈ QH−k′·C′ , there exists some arc a′′ ∈ H − k′ ·C′ such

that q′′ = dom(a′′) or q′′ = cod(a′′). Since q′′ /∈ QC , we have a′′ /∈ C and

hence H [a′′] = H ′[a′′]. Then H ′[a′′]−k′ ·C′[a′′] = H [a′′]−k′ ·C′[a′′] > 1. It

follows that q′′ ∈ QH′−k′·C′ . Since each connected component of QH′−k′·C′

contains a state from Qσ′ ∪ {q′0} and Qσ′ ∪ {q′0} ⊆ QC , there exists a path

from q′′ to C in H ′ − k′ · C′ and hence in H − k′ · C′.

– q′′ ∈ QH′′ where H ′′ is a connected component of H − k · C different from

H ′. Then QH′′ ∩ QC 6= ∅ otherwise there would be no path from the set of

states QH′′ to the set of states QC in H . Therefore there exists a path from q′′

to C in H ′′ and hence in H − k′ · C′.

Thus H − k′ ·C′ is connected and the circuit C′ is appropriate for H and (q0, σ).

4.2 Building a Multiset of Simple Wings from a Pathological Circulation

The construction of a representative multiset F of simple wings from the multiset Ĥ
of arcs is described in Algorithm 2. Initially F is empty and we put H = Ĥ . Hence

cost(F)+cost(H) = m ·cost(Ĥ) with m = 1. This equality will act as a loop invariant

of the main iterating process. First, a circuit C adequate for Ĥ and q̂ is found with

the help of Algorithm 1. Recall here that a circuit C is appropriate for H and (q̂, ǫ)
(where ǫ denotes the empty path) if, and only if, it is adequate for H and q̂. Let k be

the multiplicity of C in H . Then the Eulerian multiset H − k · C is connected and

q̂ ∈ QH−k·C provided that H − k · C is not empty. Moreover ||H − k · C|| < ||H ||.
We build from C a wing W starting from q̂ with C as its cyclic component. If q̂

appears in C then W = k · C is a simple wing starting from q̂. Assume that q̂ /∈ QC .

Then q̂ ∈ QH−k·C . Since H is connected, there is a state q ∈ QC ∩ QH−k·C . Since

H−k ·C is connected, there are a simple path γ1 from q̂ to q and a simple path γ2 from

q to q̂ made of arcs from AH−k·C . We let D denote the multiset of arcs that corresponds

to the cycle γ1.γ2. Then the multiset W = D + k · C represents a simple wing which

starts from q̂. Moreover D[a] 6 2 for each a ∈ A because γ1 and γ2 are simple paths,

hence W 6 3 ·H , because k ·C 6 H . Furthermore, each arc a ∈ AC with multiplicity

k in H does not occur in γ1.γ2, since it does not occur in H − k · C. We distinguish

then three cases:

1. If W = H then the simple wing W is added to F and removed from H leading to

the empty multiset H ′ = 0.

2. If W 6 H , H −W is connected and q̂ ∈ QH−W then the simple wing W is added

to F and removed from H leading to the new circulation H ′ = H −W such that

q̂ ∈ QH′ . Since k is the multiplicity of C in H , we get ||H ′|| < ||H ||.
3. Otherwise the multiset of wings F is multiplied by 3. Then we have cost(F) +

cost(3 ·H) = m · cost(Ĥ) for some m ∈ N \ {0}. Let a be an arc from C such that

H [a] = k. Then 3 · H [a] −D[a] = 3k because a does not occur in γ1.γ2. On the

other hand, for each arc a′ from C with H [a′] > k+1, we have 3 ·H [a′]−D[a′] >
3k + 1 because D[a′] 6 2. It follows that 3k is the multiplicity of C in 3 ·H −D.

We consider the new wing W ′ = D + 3k · C. The wing W ′ is added to F and



Algorithm 2 Computing a multiset of simple wings

Require: A non-empty circulation Ĥ and a state q̂ ∈ QĤ

F ← 0 # Initially F is the empty multiset of simple wings

H ← Ĥ # Initially cost(F) + cost(H) = m · cost(Ĥ) with m = 1
while H 6= 0 do

C ← AppropriateCircuit(H, q̂, ǫ) # C is adequate for H and q̂.

Let k be the multiplicity of C in H # k · C 6 H and H − k · C is connected

if q̂ ∈ QC then

D ← 0 # D ∈ NA is the empty multiset of arcs

W ← k · C # The multiset W represents a simple wing such that W 6 H

else

Let q be some state in QC ∩QH−k·C .

Let γ1 be a simple path from q̂ to q made of arcs from AH−k·C .

Let γ2 be a simple path from q to q̂ made of arcs from AH−k·C .

Let D be the multiset of arcs that corresponds to the cycle γ1.γ2. # Then D 6 2 ·H
W ← D + k · C # The multiset W represents a simple wing such that W 6 3 ·H

end if

if (H = W ) or (W 6 H and H −W is connected and q̂ ∈ QH−W ) then

Add the simple wing W to F .

H ← H −W # cost(F) + cost(H) = m · cost(Ĥ) for some m > 1
else

W ′ ← D + 3k · C # We have AH−k·C = A3·H−W ′

F ← 3 · F # cost(F) + cost(3 ·H) = m · cost(Ĥ) for some m > 1
Add the simple wing W ′ to F .

H ← 3 ·H −W ′ # cost(F) + cost(H) = m · cost(Ĥ) for some m > 1
end if

end while

return F

removed from 3 ·H leading to the new Eulerian multiset of arcs H ′ = 3 ·H −W ′.

For each a ∈ A, we have 3(H − k ·C)[a] > H ′[a] > 3(H − k ·C)[a]− 2, because

D[a] 6 2. Hence AH′ = AH−k·C . Consequently, H ′ is connected, ||H ′|| < ||H ||,
and q̂ ∈ QH′ if H ′ 6= 0.

Thus, in all cases we get that H ′ is Eulerian and connected. Moreover q̂ ∈ QH′

provided that H ′ is not empty and hence the next iteration of the algorithm can proceed

analogously. Furthermore we have ||H ′|| < ||H || henceforth Alg. 2 terminates after at

most |A| iterations.

Example 15. We continue Examples 3 and 12 to illustrate an execution of Alg. 2 with

the VASS depicted in Figure 1, the circulation Ĥ = a1 + a2 + a3 + 5 · l1 + 3 · l2, and

the base state q̂ = q0. First, the adequate circuit l1 with multiplicity 5 can be chosen

which leads to the wing W1 = a1 + a2 + a3 + 5 · l1. Since Ĥ −W1 does not contain

q̂, we put W ′
1 = a1 + a2 + a3 + 15 · l1 and get F = {W ′

1} and H = 3 · Ĥ −W ′
1 =

2 · a1 + 2 · a2 + 2 · a3 + 9 · l2 at the end of the first iteration.

In the second iteration, l2 is the unique adequate circuit for H and q̂. Therefore we

put W2 = a1+a2+a3+9·l2 and get F = {W ′
1,W2} and H ′ = H−W2 = a1+a2+a3
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Fig. 7. Multiset of wings computed in Example 15

because this Eulerian multiset of arcs is connected and contains q̂. The third and last

iteration selects the adequate circuit W3 = a1 + a2 + a3 which yields the multiset of

wings F = {W ′
1,W2,W3} depicted in Fig. 7. Observe here that cost(F) = (3, 12)⊤ =

3 · cost(Ĥ).

It is clear that the property that cost(F) + cost(H) = m · cost(Ĥ) for some m ∈
N \ {0} is a loop invariant of Algorithm 2. Consequently,

Theorem 16. Let Ĥ be a non-empty circulation and q̂ ∈ Q
Ĥ

. Algorithm 2 returns a

non-empty multiset F of simple wings starting from q̂ such that cost(F) = m · cost(Ĥ)
for some m ∈ N \ {0}.

Clearly F is made of at most |A| wings. Moreover the valuation of each wing in F is

at most 3|A| × maxa∈A Ĥ [a]. Since Ĥ is obtained from our variant of Kosaraju and

Sullivan’s algorithm, the size of Ĥ is polynomial in the size of S. Thus, the size of the

valuation of each wing in F is also polynomial in the size of S.

4.3 An Upper Bound for the Number of Distinct Simple Wings

Since Algorithm 2 terminates in less than |A| iterations, it provides us with a multiset

F of simple wings starting from the arbitrarily fixed state q̂ with at most |A| distinct

wings. We can make sure that the representative multiset F contains at most p distinct

wings.

This results essentially from Carathéodory’s theorem [15, Cor. 7.7i] which states

that for each set X ⊆ Qp of p-dimensional rational vectors, any rational vector v ∈ Qp

that lies in Cone(X) = {λ1 ·x1+...+λn ·xn | n > 1;x1, ..., xn ∈ X ;λ1, ..., λn ∈ Q+}
lies in Cone(X ′) for some X ′ ⊆ X with |X ′| 6 p, i.e. v = λ1 · x1 + ...+ λn · xn with

p > n > 1, x1, ..., xn ∈ X and λ1, ..., λn ∈ Q+.

Consider a multiset of wings F = k1 · W1 + ... + kn · Wn with cost(F) > 0.

Carathéodory’s theorem ensures that there are rational numbers λ1, ..., λn ∈ Q+ such

that cost(F) = λ1 · cost(W1) + ...+ λn · cost(Wn) and λi 6= 0 for at most p values of

i. Actually these rational numbers λi can be found using linear programming. Further

Euclid’s algorithm enables us to compute the least common multiple m of the denom-

inators of all λi. Then we get m · cost(F) = k′1 · cost(W1) + ... + k′n · cost(Wn) > 0

with k′i ∈ N and k′i 6= 0 for at most p values of i. Hence,

Corollary 17. Let Ĥ be a non-empty circulation and q̂ ∈ Q
Ĥ

. We can compute in

polynomial time a multiset F built over at most p distinct simple wings starting from q̂
such that cost(F) = m · cost(Ĥ) for some m ∈ N \ {0}.

Since our algorithm is polynomial, the size of the valuation of these wings and the

size of the number of occurrences of these wings are polynomial in the size of S.



5 Searching for Minimal Counter-Examples

Shortest counter-examples are usually more valuable in the debugging phase, because

they focus on the actual causes of the bug and hence they are easier to understand [3,

12]. That is why many verification tools offer to search for an erroneous path with a

minimal length, see e.g. with Spin [7]. Several directions can be followed to describe a

structural bug of a VASS in a minimal way. Pathological cycles with a minimal length

are not that interesting in general because their length can be exponential in the size of

the system (Example 6). The first natural approach we consider consists in searching for

pathological cycles with a minimal number of distinct arcs. However, with no surprise,

Proposition 18. Computing a pathological cycle of a VASS with a minimal number of

distinct arcs is NP-hard.

Since multisets of wings with a common starting state are a particular case of cycles

and each pathological cycle can be represented by a pathological multiset of wings over

the same set of arcs, Prop. 18 applies to the particular case of multisets of wings with a

common starting state.

A coordinate i ∈ [1..p] is said to be involved in an arc a if cost(a)[i] 6= 0. The

set of interacting coordinates in a cycle collects all coordinates involved in its arcs. A

second natural approach aims at minimizing the number of interacting coordinates in a

pathological cycle. Again, with no surprise,

Proposition 19. Computing a pathological cycle of a VASS with a minimal number of

interacting coordinates is NP-hard.

Similarly to Prop. 18, this result applies to pathological multisets of wings with a com-

mon starting state. Thus searching for minimal multisets of wings appears to be hard in

general.

In this section, we consider the problem of finding a pathological multiset of wings

whose component paths have a minimal length. We show how to solve this problem in

polynomial time using a separation algorithm. To do so, we fix a starting state q̂ and a

natural number ℓ and we focus on wings starting from q̂ whose component paths have

length at most ℓ. We show how to decide whether there exists a pathological multiset

made of these wings, and if so, to compute one in polynomial time. In this way, we can

minimize the length of the component paths used in a pathological multiset of wings.

5.1 An Upper Bound for the Valuations of Wings

Let S = (Q,A) be a VASS, q̂ ∈ Q be a fixed state of S and ℓ ∈ N. For simplicity’s

sake, we call length of a wing the maximal length of its component paths. However,

the results presented here can be adapted to the case where the length of a wing is the

sum of the lengths of its component paths. We want to determine whether there exists a

multiset F made of wings starting from q̂ with length at most ℓ such that cost(F) > 0.

We observe first that we can restrict the search to wings with a valuation at most equal

to 2Φ where Φ is polynomial in the size of S.



Lemma 20. Let F be a non-empty multiset of wings starting from q̂ with length at most

ℓ such that cost(F) > 0. Let Φ = 96 × p4 × size(S). Then there exists a non-empty

finite multiset F ′ of wings starting from q̂ with length at most ℓ and valuation at most

2Φ such that cost(F ′) > 0.

Proof. By Cor. 17, there are a positive natural number n 6 p and n wings W1, ...,Wn

such that the system (Sys1) of p+ n inequalities

∑n
i=1 ki · cost(Wi) > 0

ki > 0 for each i ∈ [1..n]

has an integral solution. We put Wi = D2i + k′i ·C2i+1 where k′i is the valuation of the

wing Wi. We consider now the new system (Sys2) of p+ 2n inequalities

∑n
i=1 k2i · cost(D2i) + k2i+1 · cost(C2i+1) > 0

k2i > 0 for each i ∈ [1..n]
k2i+1 > 0 for each i ∈ [1..n]

Since (Sys1) has an integral solution, (Sys2) has an integral solution. Any integral so-

lution to (Sys2) corresponds to some multiset F of wings starting from q̂ such that

cost(F) > 0 and for each i, the wing D2i + k2i+1 · C2i+1 appears once and the wing

D2i with valuation 0 appears k2i+1 − 1 times if k2i+1 > 1.

Recall that solving a system of linear Diophantine inequalities is NP-complete.

Moreover some integral solution of such a system use polynomial space, only. The

matrix from (Sys2) has p+ 2× n rows and 2× n columns. The absolute value of each

component of this matrix is at most 2 × |Q| × vmax where vmax is the maximal abso-

lute value of components in vectors carried by arcs in S. We can assume of course that

|A| > 1, |Q| > 1 and p > 1. Then size(S) > ⌈log2(2 × |Q| × vmax + 1)⌉. The size of

each row is 2×n×⌈log2(2× |Q|× vmax +1)⌉6 2× p× size(S). By [15, Cor.17.1b],

there exists some integral solution to (Sys2) whose size is at most 6 × (2 × p)3 × ϕ,

where the facet complexity ϕ is smaller than 2 × p × size(S). Thus there is a solution

to (Sys2) whose size is at most 96× p4 × size(S) = Φ. Consequently there exists some

integral solution of (Sys2) where each variable ki satisfies ki 6 2Φ.

Note here that the number N of wings starting from q̂ with length at most ℓ and val-

uation at most 2Φ is exponential in the size of S. Let W1,..., WN be an enumeration

of these wings. Then the linear program
∑i=N

i=1 x[i] · cost(Wi) > 0 with x ∈ QN and

x  0 has a solution if and only if there exists a non-empty multiset F of wings starting

from q̂ with length at most ℓ (and valuation at most 2Φ) such that cost(F) > 0.

We consider actually a kind of dual problem. We define the linear program LPS,q̂,ℓ

for a vector w ∈ Qp of p unknown which consists of the following two sets of con-

straints:

• w[i] > 0, for each i ∈ [1..p];
• −cost(W )⊤w > 0, for each wing W starting from q̂ with length at most ℓ and

valuation at most 2Φ.

By Gordan Theorem [15, p. 95], the linear program LPS,q̂,ℓ has no solution if and only

if there exists some non-negative non-zero linear combination of its row vectors that



Algorithm 3 (Separation algorithm)

Require: S = (Q,A) is a VASS, w ∈ Qp, q̂ ∈ Q.

Ensure: returns true if w is a solution to LPS,q̂,ℓ and some violated inequality otherwise

if w 6> 0 then

return some i ∈ [1..p] such that w[i] 6 0.

end if

for q, q′ ∈ Q do

Compute blmwq,q′(w) ∈ Q and a path γq,q′ ∈ A⋆ in polynomial time

end for

for q ∈ Q do

if (*) blmwq̂,q(w) + 2Φ × blmwq,q(w) + blmwq,q̂(w) > 0 then

return the row vector cost(γq̂,q) + 2Φ · cost(γq,q) + cost(γq,q̂)
end if

end for

return true

sum to a non-negative vector, i.e. there exists a non-empty multiset F of these wings

with cost(F) > 0.

Corollary 21. The linear program LPS,q̂,ℓ has no solution iff there exists a non-empty

multiset F of wings starting from q̂ with length at most ℓ such that cost(F) > 0.

5.2 Separation of Solutions

The linear program LPS,q̂,ℓ consists of exponentially many inequalities. So we shall

not build the whole set of its inequalities. However, we show here how to decide in

polynomial time whether a given vector w ∈ Qp is a solution to LPS,q̂,ℓ or not, and, in

the latter case, to compute an inequality of LPS,q̂,ℓ for which w fails.

If some component w[i] of w is non-positive, then the constraint w[i] > 0 is not

satisfied. Thus we may assume that w > 0. We denote by S/w = (Q,A/w) the di-

rected graph obtained from the VASS S by replacing the label cost(a) ∈ Zp of each arc

a ∈ A by cost(a)⊤w. For any two states q, q′ ∈ Q, we compute the maximal weight

blmwq,q′ (w) ∈ Q of the paths from q to q′ in S/w with length at most ℓ. We compute

also a path γq,q′ ∈ A⋆ from q to q′ with length at most ℓ and such that its weights sum

to blmwq,q′(w) if it is regarded as a path in S/w, i.e. cost(γq,q′ )
⊤w = blmwq,q′(w).

Note that blmwq,q(w) > 0 for each q ∈ Q. Let q ∈ Q be some state of S. If

blmwq̂,q(w) + 2Φ × blmwq,q(w) + blmwq,q̂(w) > 0 then the wing W built with

the path γq̂,q , followed by 2Φ iterations of the cycle γq,q and the path γq,q̂ satisfies

cost(W )⊤w > 0. Otherwise w is a solution to LPS,q̂,ℓ.

Proposition 22. Let w ∈ Qp. We can decide in polynomial time whether w is a solution

to LPS,q̂,ℓ or not, and, in the latter case, return an inequality of LPS,q̂,ℓ for whichw fails.

5.3 Computing a Pathological Multiset of Wings with Length at most ℓ

Although the linear program LPS,q̂,ℓ consists of exponentially many inequalities, the

fundamental result due to Grötschel, Lovász and Schrijver [15, Th. 14.1] asserts that



it is sufficient to design a separation oracle in order to solve this linear program in

polynomial time. Given a vector w > 0, the separation oracle must decide whether w
is a solution to LPS,q̂,ℓ or not, and, in the latter case, compute an inequality of LPS,q̂,ℓ

for which w fails; in other words the separation oracle must compute a wing W with

length at most ℓ and valuation at most 2Φ for which cost(W )⊤w > 0 whenever w is

not a solution to LPS,q̂,ℓ. We have shown in Subsection 5.2 above how to design such

an oracle. As a consequence, we get our second main result:

Theorem 23. Let S = (Q,A) be a VASS, q̂ ∈ Q be a particular state and ℓ be a natural

number. We can decide in polynomial time whether there exists a non-empty multiset F
of wings starting from q̂ with length at most ℓ such that cost(F) > 0.

With no surprise, the algorithm designed by Grötschel, Lovász and Schrijver to prove

[15, Th. 14.1] can provide us with a certificate that LPS,q̂,ℓ has no solution in the form of

polynomially many constraints from LPS,q̂,ℓ that have no solution. By Gordan Theorem

again, we can derive from this certificate a multiset F of wings with cost(F) > 0.

Consequently we can find in polynomial time a multiset of wings with a minimal size

that describes a pathological cycle for structural termination. Further, we can guarantee

that this multiset consists of at most p distinct wings.

6 Conclusion and Future Work

In this paper we tackle the problem of illustrating a structural bug detected in the form

of a pathological circulation in a concise way. We propose to represent pathological

cycles for structural termination as a set of wings that share a common starting state.

Our main result shows how to compute a pathological multiset of wings in polynomial

time (Th. 16) from any pathological circulation. Further we need only p distinct wings

in such a multiset due to Carathéodory’s theorem.

In practice it is interesting to search for pathological cycles (or pathological mul-

tisets of wings) with a minimal number of arcs or a minimal number of interacting

places. Yet, both problems are NP-hard. Our second result is more theoretical: We have

applied the separation technique from [15, Th. 14.1] to prove that one can search for

wings whose component paths have a minimal length in polynomial time, too. Interest-

ingly all results presented in this paper apply —or can be easily adapted— to structural

boundedness: A VASS is said to be structurally bounded if for each initial configura-

tion the number of reachable configurations is finite. This property corresponds to the

non-existence of cycles with a non-negative non-zero cost.

Message Sequence Graphs (MSGs) are a popular formalism to describe communi-

cation protocols by means of partial orders of events called Message Sequence Charts

[6]. As discussed in [1], MSGs can be regarded as a special case of VASSs when the lat-

ter are provided with a partial-order semantics. In this way, new features can be stirred

into message sequence graphs such as message loss, message duplication, dynamic

process creation, bounded counters or timers, etc. For that reason we found it useful

to develop a prototype that implements the model-checking and the reachability tech-



niques from [1]. In the near future our verification tool will benefit from the description

of structural bugs by wings presented in this paper.
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