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Abstract—The paper addresses the problems of active learning 

and conformance testing of systems modeled by nondeterministic 
Mealy machines (NFSM). It presents a unified SAT-based 
approach originally proposed by the authors for deterministic 
FSMs and now generalized to partial nondeterministic machines 
and checking experiments. Learning a nondeterministic black 
box, the approach neither needs a Teacher nor uses it a 
conformance tester to approximate equivalence queries. The idea 
behind this approach is to infer from a current set of traces not 
one, but two inequivalent conjectures, use an input sequence 
distinguishing them in an output query, and update the current 
trace set with an observed trace to obtain a new pair of 
distinguishable conjectures, if possible. The classical active 
learning problem is further generalized by adding a 
nondeterministic specification FSM, which defines the solution 
space. The setup unifies the learning and adaptive testing 
problems and makes them equisolvable with the proposed 
approach.  

Keywords—active learning, passive inference, nondeterministic 
FSM, adaptive testing, SAT solving 

I. INTRODUCTION 
State machines take an important place in model based testing 
of software. There exists a significant body of work addressing 
their use for automated test generation. Recent work also 
focuses on model inference of software and reactive systems. 
In fact, active learning and test generation are shown to be 
closely related [4], [22]. Most of the existing work considers 
that a deterministic state machine is an adequate model for 
testing purposes. However, a relatively little work has been 
done by the testing and model inference communities for 
nondeterministic models. It is sufficient to mention that the 
widely used benchmarks for automata learning and 
conformance testing [33] do not contain nondeterministic 
models. Nondeterminism typically this comes either from some 
abstraction that has been applied or there being a number of 
acceptable output sequences in response to some input 
sequence [12]. Moreover, the complexity and evolving nature 
of current systems increase uncertainty about their behavior and 
nondeterministic state machines can formalize such uncertainty 
in many applications. 

The problem of inferring automata models, such as DFAs 
and FSMs, from sets of strings (traces) has been extensively 
studied in the literature; Kella [14] and Gold [8] seem to be 
among the first contributors. The problem is known to be 
computationally very hard, nevertheless, numerous proposals 
have been made, mainly on developing state merging 
techniques to transform a tree machine representing a given 
set of strings into a machine as small as possible that is 
consistent with this set [18], [19]. While the passive inference 
problem is important by itself from both, theoretical and 
practical, points of view, it is also considered as an essential 
step of active inference of automata models.  

The existing methods for active inference, i.e., query 
learning of FSMs follow the basic idea of L* approach [3] of 
using a Minimally Adequate Teacher, also called an oracle, 
[17], [4], [29], [5], [30], [31] to answer equivalence queries. 
An equivalence query is about a conjecture, for which the 
oracle is capable to provide a counterexample, i.e., an input 
sequence that distinguishes the conjecture from the FSM to be 
inferred. Equivalence queries are not realistic and a practical 
solution is to approximate them by random or complete test 
suites generated by conformance testing methods [21], [31]. 
Thus, in reality the role of the oracle is played by a black box 
FSM, supported by the additional assumption on the number 
of states in the black box.   

Recently, we suggested an alternative approach for 
learning deterministic machines that eliminates the need to 
generate conformance tests for each intermediate conjecture 
and does not use any state identification facilities [22]. This is 
achieved by changing the objects of equivalence queries 
before converting them into output (membership) queries. 
The traditional equivalence query is about the target and a 
current conjecture FSM, while we proposed to use instead of 
the target FSM, another conjecture FSM. The idea is thus to 
infer from a current set of traces not one, but two inequivalent 
(distinguishable) conjectures, use an input sequence 
distinguishing them in an output query, and update the current 
trace set with an observed trace to obtain a new pair of 
distinguishable conjectures, if possible. The process 
converges as the number of conjectures with the fixed number 

362

2019 IEEE 19th International Conference on Software Quality, Reliability and Security (QRS)

978-1-7281-3927-2/19/$31.00 ©2019 IEEE
DOI 10.1109/QRS.2019.00053



of states is bounded. The conjecture generation relies on 
satisfiability (SAT) solvers, as in similar work [1], [9]. A set 
of input sequences allows to infer an unknown FSM if and 
only if it is a checking experiment (complete test suite) for the 
FSM. This demonstrates that learning and conformance 
testing are closely related and can be solved by the same 
approach proposed for deterministic FSMs [22]. The 
incremental nature of the approach contributes to its 
scalability and allows for a premature termination resulting in 
an approximate inferred model and an incomplete but yet 
high-yield test suite. 

In this paper, we further generalize the SAT-based 
approach for learning and testing to nondeterministic FSMs. 
The main challenge is that while for a nondeterministic 
automaton there exists an equivalent deterministic one, this 
does not hold for FSMs. An NFSM cannot be converted to a 
trace equivalent DFSM. As a result, inference and testing 
approaches for NFSMs cannot be straightforward extensions 
of their deterministic counterparts. 

First, we observe that given a set of input/output strings 
(traces) it may not be possible to infer from it a deterministic 
FSM. A set of traces is not deterministic if it contains traces 
that have the same input sequence but different output 
sequences. The problem of inferring a nondeterministic FSM 
(NFSM) from such a set of traces has received much less 
attention compared to the deterministic case. There exist the 
state minimization methods for NFSMs [13] that can be used 
to merge states. They allow to obtain a single conjecture, but 
cannot construct several inequivalent conjectures. These are 
needed when passive inference of FSMs is just a step in the 
active inference via checking experiment generation, as in the 
deterministic case [22]. As soon as no more distinguishable 
conjectures can be found we conclude that the set of traces is 
a checking experiment identifying the machine. In this paper, 
we elevate the SAT-based approach for passive inference to 
the nondeterministic traces. 

As to the problem of active inference of NFSMs, we are 
aware of only very few works [7], [20], [2]. All of them focus 
on extending the Angluin’s algorithm L* to nondeterministic 
machines and thus use the oracle to answer equivalence 
queries. The main difference from the deterministic case is 
that output queries need to be repeatedly made to a black box, 
until the assumption about fairness of nondeterministic 
implementations is satisfied. This assumption is also called 
“all weather conditions” [16] and complete testing 
assumption [15]. It is used in all the existing work on 
conformance testing from NFSMs [23], [32], [24], [12]. In 
practical terms, it means that for implementations from a 
given domain, the tester knows how many times and under 
which conditions tests must be re-executed to have a 
sufficient confidence about the completeness of the observed 
reactions of the implementations. While we also rely on this 
assumption, our goal here is to elaborate an active inference 
approach that does not need the oracle (Teacher) even if it is 

given a nondeterministic black box, as opposed to the existing 
work.  

The existing approaches for testing from NFSMs follow 
offline or online testing scenarios. In the offline testing 
scenario, we need to generate from a given specification 
NFSM a test suite complete for a chosen fault model. Such 
test suites are in fact checking experiments. The resulting tests 
are then repeatedly executed against an implementation FSM 
unless it is known that it is deterministic, even though its 
specification is not. In this scenario, a conforming 
implementation must produce for each test only output 
sequences allowed by the specification NFSM, so the trace 
inclusion, often called a reduction, is the conformance 
relation [26], [25]. Repeated test execution satisfying the 
complete testing assumption is needed if the implementations 
cannot be assumed to be deterministic. In this case, we can 
use the reduction conformance relation or even a more 
stringent trace equivalence conformance relation. According 
to this relation, a conforming implementation should produce 
all the output sequences of the specification NFSM and only 
them for each test. Trace equivalence is the relation to be used 
when we want to learn an NFSM. 

In the online testing scenario, test generation and execution 
are merged into one process allowing the tests to be adapted 
to an implementation under test [28], [6], [10], [11]. The 
process aims to verify whether a given implementation 
conforms to its specification. The online testing is an adaptive 
process and uses the trace inclusion conformance relation. 
The expected result of adaptive testing is a learned reduction 
of a given specification NFSM. The problem of adaptive 
testing from an NFSM is in fact a special case of a more 
general active inference problem statement we propose in this 
paper. Given a known NFSM and an unknown NFSM, infer 
the latter if it is a reduction of the former or determine a test 
that distinguishes the machines, otherwise. The classical 
setting of the FSM learning problem does not explicitly 
include the known FSM, but if we assume that it is in fact an 
NFSM with the set of all possible traces over the given input 
and output alphabet, often called a chaos machine, then it 
becomes a special case of the generalized active inference 
problem statement. In this paper, we demonstrate how our 
approach can be adopted to address this problem. 

All the existing methods for test generation from NFSMs 
compose tests by concatenating the test fragments, namely, 
state preambles needed to reach states, state identifiers to 
check the reached state and trace traversal sets, which allow 
to execute transitions and to reach additional states if they are 
present in a given implementation. These fragments can be 
seen as generalization of the three types of input sequences 
constructed by the test generation methods previously 
developed for deterministic machines [15], [24]. Those are 
transfer, state identification and traversal sequences. The 
extension to the nondeterministic case is not trivial [24], [27]. 
Considering DFSMs, our approach based on SAT solving 
allows to determine complete test suites for the equivalence 
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relation and now we demonstrate how it can be enhanced for 
NFSMs to construct tests for both, equivalence and reduction 
relations.    

The remaining of this paper is organized as follows. 
Section 2 recalls the basic definitions and notions for state 
machines. Section 3 presents a SAT-based method for passive 
inference of nondeterministic conjectures which is used for 
test generation from an NFSM in Section 4. Section 5 explains 
a method that allows to learn an unknown NFSM. Section 6 
focuses on a more general active inference problem where we 
need to learn an unknown NFSM if it is a reduction of a 
known machine or determine a test that distinguishes the 
machines, otherwise. Section 7 concludes.  

II. DEFINITIONS  
A Finite State Machine or simply a (Mealy) machine M is a 5-
tuple (S, s0, I, O, T), where S is a finite set of states with an 
initial state s0; I and O are finite non-empty disjoint sets of 
inputs and outputs, respectively; T is a transition relation T � S 
� I � O � S, (s, a, o, s�) � T is a transition. When we need to 
refer to the machine M initialized in a state s � S, we write M/s. 

M is complete (completely specified) if for each tuple (s, a) 
� S � I there exists transition (s, a, o, s�) � T, otherwise it is 
partial. The machine is trivial, denoted �, if T = �. M is 
deterministic if for each (s, a) � S � I there exists at most one 
transition (s, a, o, s�) � T, otherwise it is nondeterministic. M is 
observable if for each tuple (s, a, o) � S � I � O there exists at 
most one transition (s, a, o, s�) � T.  In this paper we consider 
only observable machines, as any complete NFSM can be 
transformed into an observable machine. M is a submachine of 
M' = (S', s0, I, O, T') iff S � S' and T � T'.  

An execution of M/s is a finite sequence of transitions
forming a path from s in the state transition diagram of M. The 
machine M is initially connected, if for each state s � S there 
exists an execution from s0 to s. A string in (IO)* which labels 
an execution of M in some state is called a trace of M. Let Tr(s) 
denote the set of all traces of M/s and Tr(M) denote the set of 
traces of M. A prefix of trace � � Tr(s) is a trace �� � Tr(s) 
such that � = ���. For a trace � � Tr(s), we use s-after-� to 
denote the state of M reached after the execution of �, for an 
empty trace �� s-after-� = s. We also write M-after-� instead of 
s0-after-�.  

Given a trace � over alphabets I and O, the I-restriction of 
� is obtained by deleting from � all symbols that are not in I, 
denoted ��I. The O-restriction of �, denoted���O, is similarly 
defined. The length of a trace is defined as the length of its I(O)-
restriction.  

Let Out(s, �) be the set of all output sequences produced by 
the input sequence � � I* in M/s, i.e., Out(s, �) = {��O |� � 
Tr(s), ��I = �}. 

Given an input sequence � � I*, states s, s� � S are 
equivalent on �, denoted s ≃� s�, if Out(s, �) = Out(s�, �); they 
are not equivalent or distinguishable, denoted s � s�� if there 
exists � � I* such that Out(s, �) ≠ Out(s�, �). s� is a reduction 

of s on �, denoted s� �� s, if Out(s�, �) � Out(s, �); s� is 
distinguishable from s w.r.t. the reduction relation, denoted s� � s, if there exists � � I* such that Out(s�, �) ⊈ Out(s, �).    

Complete FSMs M and M′ are said to be equivalent, denoted 
M � M���if their initial states are equivalent on all input 
sequences in I*, i.e., Tr(M) = Tr(M�); M� is a reduction of M, 
denoted M� � M, if the initial state of M��is a reduction of that 
of M on all input sequence in I*, i.e., Tr(M�) � Tr(M).  

Defining similar relations for partial machines in the context 
of conformance testing, we assume henceforth that while a 
specification FSM might be partial, any implementation is 
input-enabled, i.e., it is modelled by a complete FSM.  

Given an FSM M, a state s � S, and an input sequence � � 
I*, � is said to be defined in s, if there exists a trace � � Tr(s), 
such that � = ��I. We use �(s) to denote the set of all defined 
input sequences for state s and �(M) for the state s0, i.e., for M. 
If M is a complete machine then �(M) = Tr(M)�I = I*. A 
sequence �a � I* is said to be undefined in s, if � � �(s) but 
�a ���(s). Furthermore, we assume that traces of M are 
harmonized [23], i.e., they satisfy the following property. If 
there exists a trace � � Tr(M), such that an input a � I is defined 
in M-after-� then for all � � Tr(M)  such that ��I = ��I, a is 
defined in M-after-�. Henceforth, we consider that FSMs have 
only harmonized traces. Obviously, complete machines have 
only such traces. 

Given a possibly partial FSM M and complete FSM M′, M� 
is quasi-equivalent to M, denoted M� � M, if the initial state of 
M��is equivalent to that of M on all input sequences in �(M); M� 
is a quasi-reduction of M, denoted M� � M, if M��is a reduction 
of M on all input sequences in �(M). Quasi-equivalence implies 
quasi-reduction, but not vice versa. We note that the traditional 
trace inclusion is called here the reduction, and the quasi-
reduction is the trace inclusion only for defined input 
sequences, as the quasi-reduction allows traces for undefined 
sequences as well.   

M� is said to be distinguishable from M for the quasi-
equivalence or quasi-reduction if there exists an input sequence 
� � �(M) such that Out(s�0, �) � Out(s0, �) or Out(s�0, �) ⊈ 
Out(s0, �), respectively.  

Next we define a fault model as a tuple of a specification 
FSM, conformance relation and fault domain [28]. In this paper, 
we have that a specification FSM M = (S, s0, I, O, T) can be 
partial and nondeterministic, hence the conformance relation is 
either the (quasi-) equivalence or (quasi-) reduction and the 
fault domain is the universe of all possible complete observable 
FSMs over the inputs I and a given number of states n, denoted 
FD(n, I). Since the quasi-equivalence and quasi-reduction 
become the equivalence and reduction when M is complete, we 
shall consider just two fault models <M, �, FD(n, I)> and <M, �, FD(n, I)>. 

Given a specification FSM M and its set of defined input 
sequences �(M), an input sequence � � �(M) is a test of M; a 
finite set of tests is a test suite of M. A test suite is said to be 
exhaustive for <M, �, FD(n, I)> or <M, �, FD(n, I)> if for each 
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FSM N � FD(n, I) that is not (quasi-) equivalent to or a (quasi-
) reduction of M, respectively, there exists a test that 
distinguishes N from M for the (quasi-) equivalence or (quasi-) 
reduction, respectively. Since a test suite contains only defined 
input sequences, it is sound and we will call a test suite complete 
for a given fault model if it is exhaustive. Such test suites are 
also called (preset) checking experiments [24]. 

III. PASSIVE INFERENCE OF NONDETERMINISTIC 
CONJECTURES 

Given the input I and output O alphabets, let � be a finite 
prefix-closed set of strings in (IO)*. We represent this set by an 
FSM. Let W(�) = (X, x0, I, O, P) be an observable tree FSM for 
which there exists a bijection f: X � �, such that f(x0) = �, (x, 
a, o, x') � P iff f(x)ao = f(x'), called the �-machine.  

An FSM C = (S, s0, I, O, T) is called an �-conjecture, if � � 
Tr(C). The states of the �-machine W(�) and an �-conjecture 
C are closely related to each other. Formally, there exists a 
mapping �: X � S, such that �(x) = s0-after-f(x). The mapping 
� induces a partition �C on the set X such that x and x� belong 
to the same block of the partition �C, denoted x =�C x�, iff �(x) 
= �(x�).  

Given an �-conjecture C with the partition �C, let D be an 
��-conjecture with the partition �D, such that �� � �, we say 
that the partition �C is an expansion of the partition �D, if its 
projection onto �� coincides with the partition �D. 

The set � is said to be nondeterministic if there exist �, �� 
� �� such that ��I = ���I and ��O ≠ ���O, otherwise it is 
deterministic.  

Addressing the problem of inferring nondeterministic FSMs, 
we further elaborate our SAT-solving approach [22] starting 
from its basic step, passive inference of an FSM. To generalize 
the approach to NFSMs, we need to first enhance this step to 
deal with nondeterministic traces. 

To achieve this, we retain the procedure, formalized in 
Algorithm 1[9] to infer a conjecture that differs from already 
considered conjectures represented by the partitions on the set 
of states of the �-machine. As before, we aim at obtaining an 
�-conjecture with a given number of states n. Note that a 
minimal number could be found by iteration. The modifications 
extend the encoding of deterministic traces into a Boolean 
formula formula [22] to a nondeterministic set of traces as 
follows.   

Let W(�) = (X, x0, I, O, P) be an �-machine. We need to find 
an �-conjecture C = (S, s0, I, O, T) with at most n states, i.e., |S| 
≤ n. To this end, a mapping �: X � S should fulfill the following 
constraints: 

 
�x, y � X: if x � y then �(x) � �(y) and 
if Out(x, a) = Out(y, a) for some a � I  
then �(x) = �(y) ⇒ �(x)-after-ao = �(y)-after-ao for �o � 
Out(x, a)                                                                                 (1) 

 

A mapping � satisfying (1) defines a partition on X and each 
block becomes a state of the �-conjecture.  

These formulas are then translated to SAT using unary 
coding for integer variables, represented by n Boolean variables 
vx,0, …, vx,n-1. For each x � X, we have the clause: 

 
 vx,0 �… � vx,n-1 (2) 
 

These clauses mean that each state should be in at least one 
block. 

For each state x � X and all i, j � {0, …, n - 1} such that i � 
j, we have the clauses: 

 
 � vx,i � � vx,j (3) 

 
These clauses mean that each state should be in at most one 

block. The clauses 2 and 3 encode the constraint that each state 
should be in exactly one block. 

We also use auxiliary variables ex,y. For every x, y�� X such 
that x � y we have 
 �ex,y (4) 

This ensures that distinguishable states are not merged into 
one state in the �-conjecture.  

For every x, y�� X such that Out(x, a) = Out(y, a), we have 
 

 ex,y ⇒ ex-after-ao,y-after-ao   
for �o � Out(x, a)                                                                  (5) 

This ensures that the successors of two merged states for 
each input/output pair are also merged and the resulting FSM is 
observable. 

For every x, y�� X and all i � {0, …, n - 1} 
 

 ex,y � vx,i ⇒ vy,i (6) 
 �ex,y � vx,i ⇒ �vy,i (7) 
 

The resulting Boolean formula is the conjunction of clauses 
(2) - (7). To check its satisfiability one can use an existing 
solver, calling the function call-solver(formula), as follows. 

 
Algorithm 1. Infer_conjecture(�, n, �)  
Input: A set of traces �, an integer n, and a set of partitions 

� 
Output: An �-conjecture with at most n states such that its 

partition does not expand any partition in � or False. 
1. formula = conjunction of the clauses (2) - (7) 
2. for all � � � do 
3. clause = False 
4. for all x, y such that x =� y do 
5. clause = clause � �ex,y 
6. end for  
7. formula = formula � clause  
8. end for  
9. return call-solver(formula)  
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If a solution exists then we have an �-conjecture with n or 
fewer states. The latter is obtained from the determined 
partition on X.  

In the context of conformance testing and inference of 
NFSMs, which are the focus of this paper, we have no �-
machine, as we need to determine traces which define a 
checking experiment or infer an unknown NFSM. Building a 
checking experiment, the number of states of an 
implementation machine in a chosen fault model can be 
assumed to be that of a given specification NFSM or even 
exceeding it by a given number. Active inference, i.e., learning 
of an NFSM, also needs a bound on the possible number of 
states of a black box in order to be able to terminate the process. 
Knowing the maximal number of states is also needed to 
terminate random testing and conformance testing which 
approximate equivalence queries in all the existing learning 
methods.  

IV. TEST DERIVATION FROM NONDETERMINISTIC FSM 
Addressing the conformance testing problem, we assume that a 
specification machine M = (S, s0, I, O, T) could be 
nondeterministic and partial (with harmonized traces), while 
the fault domain FD(n, I) contains complete FSMs. To simplify 
our discussion, we also assume that the fault domain FD(n, I) 
includes nondeterministic machines only if the specification is 
nondeterministic.  

In this section we propose a method for offline testing. 
Online testing is addressed in Section 6. 

Considering quasi-equivalence as a conformance relation we 
need to compare the behavior of a complete implementation 
machine to that of its possibly partial specification FSM. To this 
end, we define their intersection, called here the product for 
quasi-equivalence. 

Given two FSMs M = (S, s0, I, O, T) and M′ = (S′, s′0, I, O, 
T′), the FSM (P, p0, I, O, H), where p0 = (s0, s'0) such that P and 
H are the smallest sets satisfying the following rule: if (s, s') � 
P, Out(s, a) = Out(s�, a), (s, a, o, t) � T, (s', a, o, t') � T', then 
(t, t') � P and ((s, s'), a, o, (t, t')) � H, is called the product for 
quasi-equivalence, denoted M �� M′. For complete machines, 
we shall also use M �� M′ to denote the product. 

The definition extends the definition of a product (aka 
intersection) for deterministic machines. Undefined input 
sequences of the product can indicate that the given machines 
are not quasi-equivalent, as the following lemma states. 

 
Lemma 1. M� ≥ M if and only if �(M) = �(M �� M′). 
Proof. If M� ≥ M, then by definition, for each � ���(M), 

Out(s0, �) = Out(s�0, �). Let M ���M� = (P, p0, I, O, H). Then by 
construction, we know that Out(p0, �) = Out(s0, �) = Out(s�0, 
�). So �(M) = �(M ���M�). 

Assume now that �(M) = �(M �� M�). So if � ���(M) then 
� ���(M �� M�) and then by construction Out(s0, �) = Out(s��, 
�). Then by definition, M� ≥ M. ∎ 

 

We use this property to conclude that a conjecture is quasi-
equivalent to the specification NFSM.  

The following procedure builds a complete test suite 
incrementally. It extends the one developed recently [22] in 
several aspects:  
� it derives checking experiments instead of checking 

sequences and thus does not need FSMs be strongly 
connected,  

� the specification FSM can be nondeterministic, moreover, 
it can be a partial machine, while previously we considered 
only complete and deterministic machines.   

The procedure iteratively generates from a current set of tests 
a conjecture that has not yet been considered and adds a new 
test if the conjecture is not quasi-equivalent to the specification 
machine. It terminates when no more conjecture with at most n 
states distinguishable from the specification FSM is left. 

 
Algorithm 2. Generating a complete test suite for the fault 

model <M, ≥, FD(n, I)>
Input: An FSM M = (S, s0, I, O, T) and n, n � |S|. 
Output: A complete test suite for the fault model <M, ≥, 

FD(n, I)> 
1. � :=�� 
2. ��:= � 
3. � := � 
4. while a conjecture C is returned by Infer_conjecture(�, n, 

�) do 
5.     if �(M) = �(M ���C) then  
6. ����������:= � � {�C} 
7.     else  
��         Determine a shortest trace � such that ��I � �(M) � 

�(M �� C) and state��M �� C)-after-� has no transition 
for�some input a while state M-after-� has�

9.         � := � � ���Ia�   
10.         � := � � �� � Tr(M) � ��I = ��Ia} 
11.     end if  
12. end while 
13. return � 

 
Algorithm 2 returns a set of input sequences ��that is a 

checking experiment, i.e., a complete test suite for the fault 
model <M, ≥, FD(n, I)>. It means that any implementation of 
the fault domain FD(n, I) to be conforming for the quasi-
equivalence must produce all the output sequences of the 
specification machine M in response to each test in � and only 
them. On the other hand, if it has no output sequences M cannot 
produce, but fails to produce all the output sequences of M in 
response to each test then it is a quasi-reduction of M, as stated 
in the following.  

 
Theorem 2. Given an FSM M and a test suite � generated 

by Algorithm 2, for each FSM N � FD(n, I), 
� N ≥ M if and only if N �� M 
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� N � M if and only if N �� M. 
Proof. N � M implies N �� M because �����(M). Let us 

demonstrate that N �� M implies N � M. Assume that for some 
complete FSM N = (S′, s′0, I, O, T′), it holds that N �� M, but N 
is not quasi-equivalent to M. According to the post-condition of 
Infer_conjecture(�, n, �), there is no more conjecture from the 
set FD(n, I) left that is distinguishable from M. The FSM N 
could have been excluded if its partition was placed in the set 
�, but it is not quasi-equivalent to M, so its partition is not in 
�. Then N � FD(n, I), i.e., it has more states than n. A 
contradiction proves the statement.  

N � M implies N �� M because ���� �(M). Let us 
demonstrate that N �� M implies N � M. Assume that for some 
complete FSM N = (S′, s′0, I, O, T′), it holds that N �� M, but N 
is not a quasi-reduction to M i.e., there exists an � ���(M) such 
that Out(N, �����Out(M, ��� So �(M) � �(M ���N). The FSM 
N could have been excluded if its partition was placed in the set 
�, but it is not quasi-equivalent to M, so its partition is not in 
�. Then N � FD(n, I), i.e., it has more states than n. A 
contradiction proves the statement. ∎ 

Algorithm 2 can also be used to check whether a given test 
suite is complete for the fault model <M, �, FD(n, I)> and to 
find additional tests to make it complete, if needed. It is 
sufficient to initialize � to the given test suite. 

 

 
Fig. 1. Constructing a checking experiment for the fault model <M, �, 
FD(n, I)>. 
 

Example. Consider the FSM M in Fig. 1 (a), it is partial and 
nondeterministic. We let n be four, the number of states in M 
and use Algorithm 2. In this and other examples, for brevity, we 
present mostly the intermediate conjectures and tests used to 
create them. Also to simplify the formulas we do not include all 
the prefixes in the sets � and �. 

Inputs a and b lead to a complete �-conjecture C1 obtained 
from the set of traces � = {a1, b0, b1}. It is a single state 
machine with three transitions. � = {a, b}. The product M �� 
C1 has a state (M �� C)-after-a1b0, where input a is not defined, 

                                                           
1 We separate elements of blocks by comma and blocks by semicolon. 

since the FSM M has output 0 for this input, but C1 has output 
1. The input sequence aba is included into the set � = {aba, b}. 
We have that � = {a1, b0, b1} � {a1b0a0, a1b1a1} = {a1b0a0, 
a1b1a1, b0, b1}. The conjecture C2 is shown in Fig. 1 (b). The 
product M ���C2 has a state (M ���C2)-after-b0, where input a 
is not defined, since the FSM M has output 1 for this input, but 
C2 has output 0. The input sequence ba is included into the set 
� = {aba, ba}. Then traces b0a1, b1a1 are added to � = {b0, 
b1, a1b0a0, a1b1a1} � {b0a1, b1a1} = {a1b0a0, a1b1a1, 
b0a1, b1a1}. The conjecture C3 is shown in Fig. 1 (c). The 
product M ���C3 has a state (M ���C3)-after-a1b0a0, where 
input a is not defined, since the FSM M has output 1 for this 
input, but C3 has output 0. The input sequence abaa is included 
into the set � = {abaa, ba}. Traces a1b1a1a1, a1b0a0a1 are 
added to � = {a1b0a0, a1b1a1, b0a1, b1a1} � {a1b1a1a1, 
a1b0a0a1} = {a1b1a1a1, a1b0a0a1, b0a1, b1a1}. Fig. 1 (d) 
shows the conjecture C4 that is quasi-equivalent to M, since 
�(M) = �(M ���C4). We determine a partition on the states of 
the �-machine induced by C4, �C4 = {�, b0, b1, a1b1a1, 
a1b0a0; a1, a1b0, b0a1, b1a1, a1b1a1a1, a1b0a0a1; a1b1}1, 
by grouping all traces leading to each state and include it into 
��= {�C4}. Updated constraints result in a new conjecture C5, 
shown in Fig. 1 (e), that is also quasi-equivalent to M, since 
�(M) = �(M ���C5). We add to � the partition induced by C5, 
�C5 = {�, b0, b1, a1b1a1, a1b0a0; a1, a1b1, b0a1, b1a1, 
a1b1a1a1, a1b0a0a1; a1b0}. Now ��= {�C4, �C5}. The updated 
constraints are not satisfiable. Therefore, the set of input 
sequences � = {abaa, ba} is a checking experiment for the fault 
model <M, ≥, FD(n, I)>. ∎ 

 
Compared to the existing methods for test generation from 

nondeterministic FSMs [15], [12], [24] the proposed method 
exhibits the following advantages: 
� It is the only method which can check completeness of a 

given test suite for an NFSM and the quasi-equivalence 
relation. 

� It is also the only incremental test generation method for 
NFSMs. Test generation process can thus be terminated to 
avoid test explosion and fault coverage of the resulting tests 
can be estimated by considering intermediate conjectures.  

� The method eliminates several potential sources of test 
redundancy inherent to the existing methods. In fact, to 
determine each test it solves only the shortest path problem, 
while the existing methods construct tests from fragments 
such as transfer sequences to reach states, state identification 
and traversal sequences so each fragment is determined as a 
(approximate) solution of a (non-trivial) optimization 
problem [32], [27]. 

V. ACTIVE LEARNING OF NONDETERMINISTIC FSM 
We now elevate our approach for active learning of 
deterministic FSM that is based on SAT solving to 
nondeterministic machines.  
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When dealing with a black box NFSM N, we rely, as before, 
on the traditional complete testing assumption, which sets a 
bound on the number of repetitive applications of input 
sequences in output queries. Using output queries we can still 
determine all the traces triggered in N by an input sequence, 
even though the whole set of traces Tr(N) is a priory unknown. 
Thus, given a sequence � � I*, the set of traces �� � Tr(N)�����I 
= �} can be determined using the black box. 

The following algorithm follows the steps of Algorithm 2, 
the main difference is that in the absence of a specification 
machine to check equivalence, it uses a current conjecture 
instead and when non-equivalence is established to determine a 
counterexample trace it uses the black box.  
 

Algorithm 3. Learning an NFSM and determining its 
checking experiment for the equivalence relation 

Input A black box that behaves like an unknown FSM N 
over the input set I with at most n states 

Output The FSM N and a complete test suite for the fault 
model <N, �, FD(n, I)> 

1. � :=�� 
2. ��:= � 
3. � := � 
4. C := � (the trivial FSM) 
5. while a conjecture D is returned by Infer_conjecture(�, n, 

�) do 
6.     if C ���D is complete then  
7.         �:= � � {�D} 
8.     else 
9.         Determine a shortest trace � such that state (C ���D)-

after-� has no transition for some input a � I 
10.         ��:= �������Ia� 
11.         � := ������ � Tr(N)�����I = ��Ia} * the black box N is 

used to obtained new traces caused by the input sequence 
��Ia * 

12.         if ��⊄�Tr(C) then  
13.             C := Infer_conjecture(�, n, �) 
14.         end if 
15.     end if 
16. end while 
17. return C and � 

Theorem 3. If a black box behaves like an FSM N with the 
input set I and n states, Algorithm 3 infers it and returns a 
complete test suite for the fault model <N, ≅, FD(n, I)>.  

Proof. When Algorithm 3 terminates, there is no more a 
satisfiable conjecture Infer_conjecture(�, n, �). So, for each N� 
� FD(n, I), such that � � Tr(N�), its partition expands a 
partition in �. This means that N ���N� is complete. Then ��is 
a complete test suite for the fault model <N, �, FD(n, I)>. The 
termination is ensured by the fact that in each execution of the 
loop, the number of satisfiable conjectures Infer_conjecture(�, 
n, �) strictly decreases. ∎ 

 
Note that the procedure may have a jumpstart if provided 

with some input sequences which are a priori known to expose 
a rich behavior of the unknown NFSM. It may well be the case 
that the domain expert has some background knowledge of at 
least some features of the machine to infer. 

 
Fig. 2. Illustrating active inference of an NFSM. 
 
Example. We illustrate Algorithm 3 using an NFSM N 

shown in Fig. 2 (a), assuming that the black box has at most 
four states, so n = 4.  
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The first conjecture C1, obtained after we applied the inputs 
in ��= {a, b} to the black box, observed the traces ����{a0,
a2, b1} � Tr(N), and resolved the constraints, is a single state 
NFSM with three transitions. The conjecture is regenerated 
again as D1. The partition �D1 = (�, a0, a2, b1} is included into 
the set �.  

The conjecture D2 is a two-state machine, a2 and b1 label 
self-looping transitions in the initial state, a0 labels another 
transition to the second state. The product C1 ���D2 has no 
transitions in the state (C1 ���D2)-after-a0, so we use now aa 
to obtain ��= {aa, b} and ����{a0a1, a2a1, b1}. The 
conjecture C2 is a two-state NFSM, the initial state has a self-
looping transition labeled with b1; a0 and a2 label transitions 
to the second state, which has a self-looping transition with 
a1. 

To complete conjectures, we add the sequence ab to �, 
obtaining ��= {aa, ab, b}. The set of observed traces of N 
becomes ����{a0a1, a0b0, a2a1, a2b0, a2b1, b1}. The 
conjecture C3 has now three states, it is shown in Fig. 2 (b). 
The conjecture is regenerated again as D3. The partition �D3 = 
{�, b1; a0, a0a1, a0b0; a2, a2a1, a2b0, a2b1} is included into 
the set �. 

The conjecture C4 is shown in Fig. 2 (c). (C4 ���D3)-after-
a0a1 has no transition on a; in fact, two machines are 
distinguished by the input sequence aaa: {a0a1a1, a2a1a1} 
� Tr(C3), but {a0a1a0, a2a1a2, a2a1a0} � Tr(D1). The input 
sequence is added into ��= {aaa, ab, b}. The set of observed 
traces of N becomes ����{a0a1a1, a0b0, a2a1a1, a2b0, a2b1, 
b1}. 

The conjecture C5 is shown in Fig. 2 (d). (C5 ���D3)-after-
a0b0 has no transition on b; we determine the input sequence 
abb that distinguishes C5 and D3. ��becomes {aaa, abb, b}. 
The set of observed traces of N is now ����{a0a1a1, a0b0b1, 
a2a1a1, a2b0b1, a2b1b1, b1}. ��⊂�Tr(C5), then the 
conjecture is generated again as D4. The partition �D4 = {�, 
b1, a2b0, a2b1, a2b0b1, a2b1b1, a0b0, a0b0b01; a0, a0a1, 
a0a1a1; a2, a2a1, a2a1a1} is added into the set �.  

The conjecture D5 is shown in Fig. 2 (e). (C5 �� D5)-after-
a0a1 has no transition on b, in fact, the two machines are 
distinguished by the input sequence aab: {a0a1b0, a2a1b0, 
a2a1b1} � Tr(C5), but {a0a1b0, a0a1b1, a2a1b0, a2a1b1} � 
Tr(D5). The input sequence aab is added into ��= {aaa, aab, 
abb, b}. The set of observed traces of N is now ����{a0a1a1, 
a0a1b0, a0b0b1, a2a1a1, a2a1b0, a2b0b1, a2b1b1, b1}.  

The conjecture C6 is shown in Fig. 2 (f). When it is 
generated again as D6 its partition �D6 = {�, b1, a0b0, a0b0b1, 
a0a1b0, a2b0, a2b1, a2b0b1, a2b1b1, a2a1b0; a2; a0, a0a1, 
a0a1a1, a2a1, a2a1a1} is added into the set �.  

Fig. 2 (g) shows the conjecture D7. (C6 ���D7)-after-a2b1 
has no transition on a, in fact, the two machines are 
distinguished by the input sequence aba: {a0b0a0, a0b0a2, 
a2b0a0, a2b0a2, a2b1a0, a2b1a2} � Tr(C6), but {a0b0a0, 
a0b0a2, a2b0a0, a2b0a2, a2b1a1} � Tr(D7). The sequence 
aba distinguishing C6 and D7 is added into ��= {aaa, aab, 

aba, abb, b}. The set of observed traces of N is now 
����{a0a1a1, a0a1b0, a0b0a1, a0b0b1, a2a1a1, a2a1b0, 
a2b0a1, a2b1a0, a2b1a2, a2b0b1, a2b1b1, b1}.  

This set yields a new conjecture C7 shown in Fig. 2 (h). 
When it is generated again as D8 its partition �D8 is added into 
the set �. A subsequent conjecture generation results in D9 
shown in Fig. 2 (i). The product C7 ��� D9 has the input 
sequence abaa that distinguishes C7 and D9. ��becomes {aaa, 
aab, abaa, abb, b}. ����{a0a1a1, a0a1b0, a0b0a1a1, 
a0b0b1, a2a1a1, a2a1b0, a2b0a1a1, a2b1a0a1, a2b1a2a1, 
a2b0b1, a2b1b1, b1}.  

C8 is shown in Fig. 2 (j). When it is generated again as D10 
its partition �D10 is added into the set �. Fig. 2 (k) shows a 
next conjecture D11. (C8 ��� D11)-after-a0b0a1a1 has no 
transition on b, in fact, the two machines are distinguished by 
the input sequence abaab. ��becomes {aaa, aab, abaab, abb, 
b}. The observed traces of N are ����{a0a1a1, a0a1b0, 
a0b0a1a1b0, a0b0b1, a2a1a1, a2a1b0, a2b0a1a1b0, a2b0b1, 
a2b1a0a1b0, a2b1a2a1b0, a2b1b1, b1}. �he generated 
conjecture C9 is isomorphic to the NFSM N in Fig. 2 (a). 
Adding its partition to � results in insatisfiable constraints. 
The set ��= {aaa, aab, abaab, abba, b} is a complete test 
suite for the fault model <N, �, FD(n, I)>. ∎ 

 
Using this example, we now compare our approach to the 

traditional approach of simulating equivalence queries by 
output queries using conformance testing methods [21], [31]. 
The W-method applied to the NFSM in Fig. 2 (a) returns a 
complete test suite of 17 tests of the total length 70, reset 
included. These tests are used only in the final step of 
learning, each of a dozen of intermediate conjectures would 
need a test suite of a comparable size as well. In the worst case 
situation, all of these test suites would have to be executed as 
test queries. Algorithm 3 returns a test suite of just five tests 
of the total length 21, reset included.   

VI. ADAPTIVE TESTING AS ACTIVE LEARNING WITH A 
SPECIFICATION NFSM 

We now consider a problem that is more general than the one 
considered in the previous section. Namely, given a complete 
(specification) NFSM M = (S, s0, I, O, T) and a black box that 
behaves like a reduction of M with at most n states, learn the 
reduction.  

On the one hand, this problem reduces to the classical FSM 
inference problem when M is a single state chaos machine such 
that Tr(M) = (IO)*. Traditional work addresses the 
deterministic case, while in Section 5 we proposed an approach 
to learn nondeterministic machines; in either case, there was in 
fact no need to consider the chaos machine, as it contains all the 
possible behaviors. If, however, the NFSM M is less 
nondeterministic than the chaos machine then it does constrain 
the solution space for the learning problem. Adding this 
machine to the learning problem’s setup might be useful in 
practice when the learner has some hypotheses about the 
behavior the system to be learned, which are then formalized in 
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an NFSM. For example, the learner may have its earlier model 
and some information about possible updates.  

On the other hand, research on adaptive conformance testing 
addresses a similar problem, testing a deterministic 
implementation from its NFSM specification [12], [6]. This is, 
in fact, also a special case of the more general learning problem 
of an unknown reduction of a specification machine, since only 
deterministic implementations are allowed.  

To offer a unified solution for NFSM learning and adaptive 
conformance testing problems, we slightly adjust the above 
formulation as follows. 

Given a complete NFSM M = (S, s0, I, O, T) and a black box 
that behaves like an FSM N � FD(n, I), learn N, if it is a 
reduction of M or determine a test that distinguishes them, 
otherwise. The remaining of this section aims at solving this 
problem. 

To simplify the discussions, we focus on complete machines. 
At the same time, we define an FSM product for quasi-
reduction, which becomes the reduction relation for complete 
FSMs. 

Given FSMs M = (S, s0, I, O, T) and M′ = (S′, s′0, I, O, T′), 
such that �(M) � �(M′), the FSM (P, p0, I, O, H), where p0 = 
(s0, s'0) such that P and H are the smallest sets satisfying the 
following rule: if (s, s') � P, Out(s�, a) � Out(s, a), o � Out(s�, 
x), (s, a, o, t) � T, (s', a, o, t') � T', then (t, t') � P and ((s, s'), 
a, o, (t, t')) � H, is called the product for quasi-reduction, 
denoted M′ �� M. The difference with the product for quasi-
equivalence defined in Section 5 is as follows. The product for 
quasi-reduction has a transition for each common output and 
does not require that both machines have the same outputs for 
each common input, while the product for quasi-equivalence 
does require this.  

 
Lemma 4. M� � M if and only if �(M) = �(M′ �� M). 
Proof. If M� � M, then by definition, for each � ���(M), 

Out(s0, �) � Out(s�0, �). Let M ���M�= (P, p0, I, O, H). Then by 
construction, we know that Out(p0, �) � Out(s�0, �). So �(M) 
= �(M′ �� M). 

Assume now that �(M) = �(M �� M�). If � ���(M) then � 
���(M �� M�) and by construction Out(p0, �) = Out(s��, �). So 
M� � M. ∎ 

 
The following procedure, similar to Algorithm 3, aims at 

determining distinguishable conjectures as reductions of the 
specification machine in order to formulate an output query. 
The latter are answered by the black box, whole traces are used 
to refine conjectures. It differs from Algorithm 3 in the 
following features 
� it verifies whether a conjecture is a reduction of the 

specification machine  
� it takes care of invalid outputs produced by a black box  
� it employs both types of products for equivalence and 

reduction.  
 

Algorithm 4. Learning a reduction of a known NFSM M 
Input: A complete NFSM M = (S, s0, I, O, T) and black box 

that behaves like an FSM N � FD(n, I) 
Output: The FSM N if it is a reduction of M or a test that 

distinguishes them, otherwise 
1. � :=��
2. � := � 
3. ��:= � 
4. D := � (the trivial FSM) 
5. while a conjecture C is returned by Infer_conjecture(�, n, 

�) do 
6.     if C �� M is complete then  
7.         if C �� D is complete then 
8.             ��:= � � {�C} 
9.         else  

���             Determine a shortest trace � such that state (C �� D)-
after-� has no transition for some input a � I  �

11.             if Out(N-after-�, a)\Out(M-after-�, a) � � then 
12.                 return “��Ia distinguishes N and M” 
13.             else  
14.                 ��:= ����{��Ia}  
15.                 � := ������ � Tr(N)�����I = ��Ia} 
16.                 if � ��Tr(D) then� 
17.                     D := Infer_conjecture(�, n, �) 
18.                 end if 
19.             end if  
20.         end if 
21.     else 
22.         Determine a shortest trace � such that state (C �� M)-

after-� has no transition for some input a � I 
23.         if Out(N-after-�, a)\Out(M-after-�, a) � � then 
24.             return “��Ia distinguishes N and M” 
25.         else 
26.             ��:= ����{��Ia} 
27.             � := ������ � Tr(N)�����I = ��Ia} 
28.             if � ��Tr(D) then� 
29.                 D := Infer_conjecture(�, n, �) 
30.             end if 
31.         end if 
32.     end if 
33. end if 
34. return D and � 

Theorem 5. Given FSMs M = (S, s0, I, O, T) and N, N � 
FD(n, I), Algorithm 4 learns the FSM N if it is a  reduction of 
M and returns a test that distinguishes N and M, otherwise. 

Proof. If Algorithm 4 returns a distinguishing test, then 
Out(N-after-�, a)\Out(M-after-�, a) � � for some � and a and 
so, “��Ia distinguishes N and M”. Assume now that Algorithm 
4 returns an FSM N� such that Tr(N�) ≠ Tr(N). If Algorithm 4 
returns an FSM, this means that “Infer_conjecture(�, n, �)” 
cannot find a conjecture. Since the set � contains only traces 
from Tr(N), if “Infer_conjecture(�, n, �)” cannot find a 
conjecture then � contains a partition banning the conjecture 
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N. A partition is added to the set ��only if “C �� D is complete”. 
So at one point, N �� D is complete, i.e., D is a reduction of M. 
When N �� D is complete, D will never change again because 
� ��Tr(D). The termination of the algorithm is assured by the 
fact that in each loop, at least one conjecture is banned. ∎ 

 
Corollary 6. If N � M or M is a chaos machine then the set 

of input sequences returned by Algorithm 4 is a complete test 
suite for the fault model <N, �, FD(n, I)>. 

 
Example. We illustrate Algorithm 4 using a complete NFSM 
M shown in Fig. 3 (a) and a black box assuming that it behaves 
as a complete FSM N, shown in Fig. 3 (b), so we assume that 
n = 2.  

The complete conjecture D1 is obtained from the set of 
traces � = {a0, b0} using the set of input sequences � = {a, 
b}. It is a single state machine with two transitions that is 
generated again as the conjecture C1. The product M �� C1 is 
a complete machine, so is the product C1 �� D1 and the 
partition �C1 = (�, a0, b0} is included into the set �.  

In the next iteration, Infer_conjecture(�, n, �) returns the 
conjecture C2 as a two-state machine, a0 labels a self-looping 
transition in the initial state, b0 labels another transition to the 
second state. The product has a state (M �� C2)-after-b0, 
where input a is not defined. The input sequence ba is 
included into the set � = {a, ba}.  

The black box produces trace b0a1 when the sequence ba 
is applied, which is allowed by the specification machine M. 
� = {a0, b0a1}, � ⊄�Tr(D1) and D1 is refined to D2 that is a 
two-state machine, a0 labels a self-looping transition in the 
initial state, b0 labels a transition to the second state, a1 labels 
a transition back to the initial state. D2 is generated again as 
the conjecture C3. The product’ state (M �� C3)-after-b0 has b 
not defined. The input sequence bb is included into the set � 
= {a, ba, bb}. The black box produces trace b0b1 in response 
to bb, which is allowed by the specification machine M. � = 
{a0, b0a1, b0b1}, � ⊄�Tr(D2) and D2 is refined to D3 shown 
in Fig. 3 (c). D3 is generated again as the conjecture C4. The 
product M �� C4 is complete, so is the product C4 �� D3 and 
the partition �C4 = {�, a0, b0b1; b0, b0a1} is included into the 
set �. The next conjecture generated from the same set of 
traces is C5 shown in Fig. 3 (d). The product M �� C5 is 
complete, the product C5 �� D3 is not, since the state (C5 �� 
D3)-after-a0 has undefined input a. The sequence aa 
distinguishes C5 and D3. Out(N-after-a0, a) = {0}, determined 
by applying aa to the black box FSM N. � = {aa, ba, bb}. � 
= {a0a0, b0a1, b0b1}, � ⊄�Tr(D3) and D3 is refined to D4 
shown in Fig. 3 (e), regenerated then as C6. The product M �� 
C6 is complete, so is the product C6 �� D4 and the partition �C6 
= {�, a0, a0a0; b0, b0a1, b0b1} is included into the set �.  

The next conjecture generated from the same set of traces 
is C7 shown in Fig. 3 (b) that is in fact the unknown FSM. The 
product M �� C7 is complete, the product C7 �� D4 is not, since 

the state (C7 �� D4)-after-b0b1 has undefined input a. The 
sequence bba distinguishes C7 and D4. Out(N-after-b0b1, a) = 
{0}, determined by applying bba to the black box FSM N. � 
= {aa, ba, bba}. � = {a0a0, b0a1, b0b1a0}, � ⊄�Tr(D4) and 
D4 is refined to the conjecture D5 shown in Fig. 3 (b) that is 
the unknown FSM. C7 is generated again, the products M �� 
C7 and C7 �� D5 are complete and the partition �C7 = {�, a0, 
a0a0, b0b1, b0b1a0; b0, b0a1} is included into the set �. The 
algorithm terminates, since the resulting constraints are not 
satisfiable. The FSM N is learned, and the set of tests � = {aa, 
ba, bba} is returned. 

We compare this result with the test suite obtained by using 
the SC-method [24] for the specification FSM M in Fig. 3 (a) 
to generate a complete test suite for the fault model <M, �, 
FD(n, I)>. It contains 13 tests of the total length of 65. 
Adapting this test suite to the given implementation FSM N, 
a specification refinement method [26] yields a test suite of 
six tests of the total length of 18. Algorithm 4 returns three 
tests of the total length of 10. ∎ 

The save could be explained by considering different goals 
of the two approaches. The adaptive testing approach needs 
to verify whether a given implementation is a reduction of the 
specification, while a complete test suite, i.e., a checking 
experiment has to verify whether each and every 
implementation in FD(n, I) is a reduction, which requires 
more tests.

 

Fig. 3. Specification FSM M (a), black box FSM N (b) 
and intermediate conjectures (c), (d) and (e). 

Compared to the existing methods for adaptive testing from 
NFSMs, the proposed method has the following advantages: 
� It does not need to check whether the specification NFSM is 

reduced or has deterministically (or definitely) reachable 
states. 

� It does not need any state identification, transfer and 
traversal sequences required by the existing methods. 

� It does not only yield a conformance test suite but also 
identifies the implementation NFSM if it is a reduction of a 
given specification NFSM.
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VII. CONCLUSION 
We considered the problems of active learning and 
conformance testing of systems modeled by nondeterministic 
Mealy machines. We proposed a unified SAT-based approach 
addressing these problems which elevates the approach 
originally proposed for deterministic FSMs and checking 
sequences to partial nondeterministic machines and checking 
experiments. The learning approach neither needs a Teacher 
nor uses it a conformance tester to simulate/approximate 
equivalence queries substituting a Teacher, as opposed to all 
previous work. The idea behind this approach is to iteratively 
infer from a current set of traces not one, but two inequivalent 
(distinguishable) conjectures, use an input sequence 
distinguishing them in output query, and update a current trace 
set with an observed trace to obtain a new pair of 
distinguishable conjectures, if possible. We presented an 
extension of the encoding of the passive inference of FSMs to 
a SAT formulation that allows to deal with nondeterministic 
traces. The proposed approach demonstrates that active 
learning and conformance testing are in fact two sides of the 
same coin not only for deterministic but also for 
nondeterministic Mealy machines. We also generalized the 
classical active learning problem by adding a nondeterministic 
specification FSM, which constrains the solution space. The 
setup unifies the learning and adaptive testing problems for 
NFSMs and makes them equisolvable with the proposed 
approach.

Our current work is to complete the development of a 
prototype tool for learning and testing NFSMs. The tool should 
allow us to investigate how various encoding schemes effect the 
performance of the proposed approach.  
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