
Learning and Adaptive Testing
of Nondeterministic State Machines

Alexandre Petrenko
CRIM - Computer Research Institute of Montréal

Montréal, Canada
Alexandre.Petrenko@crim.ca

Florent Avellaneda
CRIM - Computer Research Institute of Montréal

Montréal, Canada
Florent.Avellaneda@crim.ca

Abstract—The paper addresses the problems of active learning

and conformance testing of systems modeled by nondeterministic
Mealy machines (NFSM). It presents a unified SAT-based
approach originally proposed by the authors for deterministic
FSMs and now generalized to partial nondeterministic machines
and checking experiments. Learning a nondeterministic black
box, the approach neither needs a Teacher nor uses it a
conformance tester to approximate equivalence queries. The idea
behind this approach is to infer from a current set of traces not
one, but two inequivalent conjectures, use an input sequence
distinguishing them in an output query, and update the current
trace set with an observed trace to obtain a new pair of
distinguishable conjectures, if possible. The classical active
learning problem is further generalized by adding a
nondeterministic specification FSM, which defines the solution
space. The setup unifies the learning and adaptive testing
problems and makes them equisolvable with the proposed
approach.

Keywords—active learning, passive inference, nondeterministic
FSM, adaptive testing, SAT solving

I. INTRODUCTION
State machines take an important place in model based testing
of software. There exists a significant body of work addressing
their use for automated test generation. Recent work also
focuses on model inference of software and reactive systems.
In fact, active learning and test generation are shown to be
closely related [4], [22]. Most of the existing work considers
that a deterministic state machine is an adequate model for
testing purposes. However, a relatively little work has been
done by the testing and model inference communities for
nondeterministic models. It is sufficient to mention that the
widely used benchmarks for automata learning and
conformance testing [33] do not contain nondeterministic
models. Nondeterminism typically this comes either from some
abstraction that has been applied or there being a number of
acceptable output sequences in response to some input
sequence [12]. Moreover, the complexity and evolving nature
of current systems increase uncertainty about their behavior and
nondeterministic state machines can formalize such uncertainty
in many applications.

The problem of inferring automata models, such as DFAs
and FSMs, from sets of strings (traces) has been extensively
studied in the literature; Kella [14] and Gold [8] seem to be
among the first contributors. The problem is known to be
computationally very hard, nevertheless, numerous proposals
have been made, mainly on developing state merging
techniques to transform a tree machine representing a given
set of strings into a machine as small as possible that is
consistent with this set [18], [19]. While the passive inference
problem is important by itself from both, theoretical and
practical, points of view, it is also considered as an essential
step of active inference of automata models.

The existing methods for active inference, i.e., query
learning of FSMs follow the basic idea of L* approach [3] of
using a Minimally Adequate Teacher, also called an oracle,
[17], [4], [29], [5], [30], [31] to answer equivalence queries.
An equivalence query is about a conjecture, for which the
oracle is capable to provide a counterexample, i.e., an input
sequence that distinguishes the conjecture from the FSM to be
inferred. Equivalence queries are not realistic and a practical
solution is to approximate them by random or complete test
suites generated by conformance testing methods [21], [31].
Thus, in reality the role of the oracle is played by a black box
FSM, supported by the additional assumption on the number
of states in the black box.

Recently, we suggested an alternative approach for
learning deterministic machines that eliminates the need to
generate conformance tests for each intermediate conjecture
and does not use any state identification facilities [22]. This is
achieved by changing the objects of equivalence queries
before converting them into output (membership) queries.
The traditional equivalence query is about the target and a
current conjecture FSM, while we proposed to use instead of
the target FSM, another conjecture FSM. The idea is thus to
infer from a current set of traces not one, but two inequivalent
(distinguishable) conjectures, use an input sequence
distinguishing them in an output query, and update the current
trace set with an observed trace to obtain a new pair of
distinguishable conjectures, if possible. The process
converges as the number of conjectures with the fixed number

362

2019 IEEE 19th International Conference on Software Quality, Reliability and Security (QRS)

978-1-7281-3927-2/19/$31.00 ©2019 IEEE
DOI 10.1109/QRS.2019.00053

of states is bounded. The conjecture generation relies on
satisfiability (SAT) solvers, as in similar work [1], [9]. A set
of input sequences allows to infer an unknown FSM if and
only if it is a checking experiment (complete test suite) for the
FSM. This demonstrates that learning and conformance
testing are closely related and can be solved by the same
approach proposed for deterministic FSMs [22]. The
incremental nature of the approach contributes to its
scalability and allows for a premature termination resulting in
an approximate inferred model and an incomplete but yet
high-yield test suite.

In this paper, we further generalize the SAT-based
approach for learning and testing to nondeterministic FSMs.
The main challenge is that while for a nondeterministic
automaton there exists an equivalent deterministic one, this
does not hold for FSMs. An NFSM cannot be converted to a
trace equivalent DFSM. As a result, inference and testing
approaches for NFSMs cannot be straightforward extensions
of their deterministic counterparts.

First, we observe that given a set of input/output strings
(traces) it may not be possible to infer from it a deterministic
FSM. A set of traces is not deterministic if it contains traces
that have the same input sequence but different output
sequences. The problem of inferring a nondeterministic FSM
(NFSM) from such a set of traces has received much less
attention compared to the deterministic case. There exist the
state minimization methods for NFSMs [13] that can be used
to merge states. They allow to obtain a single conjecture, but
cannot construct several inequivalent conjectures. These are
needed when passive inference of FSMs is just a step in the
active inference via checking experiment generation, as in the
deterministic case [22]. As soon as no more distinguishable
conjectures can be found we conclude that the set of traces is
a checking experiment identifying the machine. In this paper,
we elevate the SAT-based approach for passive inference to
the nondeterministic traces.

As to the problem of active inference of NFSMs, we are
aware of only very few works [7], [20], [2]. All of them focus
on extending the Angluin’s algorithm L* to nondeterministic
machines and thus use the oracle to answer equivalence
queries. The main difference from the deterministic case is
that output queries need to be repeatedly made to a black box,
until the assumption about fairness of nondeterministic
implementations is satisfied. This assumption is also called
“all weather conditions” [16] and complete testing
assumption [15]. It is used in all the existing work on
conformance testing from NFSMs [23], [32], [24], [12]. In
practical terms, it means that for implementations from a
given domain, the tester knows how many times and under
which conditions tests must be re-executed to have a
sufficient confidence about the completeness of the observed
reactions of the implementations. While we also rely on this
assumption, our goal here is to elaborate an active inference
approach that does not need the oracle (Teacher) even if it is

given a nondeterministic black box, as opposed to the existing
work.

The existing approaches for testing from NFSMs follow
offline or online testing scenarios. In the offline testing
scenario, we need to generate from a given specification
NFSM a test suite complete for a chosen fault model. Such
test suites are in fact checking experiments. The resulting tests
are then repeatedly executed against an implementation FSM
unless it is known that it is deterministic, even though its
specification is not. In this scenario, a conforming
implementation must produce for each test only output
sequences allowed by the specification NFSM, so the trace
inclusion, often called a reduction, is the conformance
relation [26], [25]. Repeated test execution satisfying the
complete testing assumption is needed if the implementations
cannot be assumed to be deterministic. In this case, we can
use the reduction conformance relation or even a more
stringent trace equivalence conformance relation. According
to this relation, a conforming implementation should produce
all the output sequences of the specification NFSM and only
them for each test. Trace equivalence is the relation to be used
when we want to learn an NFSM.

In the online testing scenario, test generation and execution
are merged into one process allowing the tests to be adapted
to an implementation under test [28], [6], [10], [11]. The
process aims to verify whether a given implementation
conforms to its specification. The online testing is an adaptive
process and uses the trace inclusion conformance relation.
The expected result of adaptive testing is a learned reduction
of a given specification NFSM. The problem of adaptive
testing from an NFSM is in fact a special case of a more
general active inference problem statement we propose in this
paper. Given a known NFSM and an unknown NFSM, infer
the latter if it is a reduction of the former or determine a test
that distinguishes the machines, otherwise. The classical
setting of the FSM learning problem does not explicitly
include the known FSM, but if we assume that it is in fact an
NFSM with the set of all possible traces over the given input
and output alphabet, often called a chaos machine, then it
becomes a special case of the generalized active inference
problem statement. In this paper, we demonstrate how our
approach can be adopted to address this problem.

All the existing methods for test generation from NFSMs
compose tests by concatenating the test fragments, namely,
state preambles needed to reach states, state identifiers to
check the reached state and trace traversal sets, which allow
to execute transitions and to reach additional states if they are
present in a given implementation. These fragments can be
seen as generalization of the three types of input sequences
constructed by the test generation methods previously
developed for deterministic machines [15], [24]. Those are
transfer, state identification and traversal sequences. The
extension to the nondeterministic case is not trivial [24], [27].
Considering DFSMs, our approach based on SAT solving
allows to determine complete test suites for the equivalence

363

relation and now we demonstrate how it can be enhanced for
NFSMs to construct tests for both, equivalence and reduction
relations.

The remaining of this paper is organized as follows.
Section 2 recalls the basic definitions and notions for state
machines. Section 3 presents a SAT-based method for passive
inference of nondeterministic conjectures which is used for
test generation from an NFSM in Section 4. Section 5 explains
a method that allows to learn an unknown NFSM. Section 6
focuses on a more general active inference problem where we
need to learn an unknown NFSM if it is a reduction of a
known machine or determine a test that distinguishes the
machines, otherwise. Section 7 concludes.

II. DEFINITIONS
A Finite State Machine or simply a (Mealy) machine M is a 5-
tuple (S, s0, I, O, T), where S is a finite set of states with an
initial state s0; I and O are finite non-empty disjoint sets of
inputs and outputs, respectively; T is a transition relation T � S
� I � O � S, (s, a, o, s�) � T is a transition. When we need to
refer to the machine M initialized in a state s � S, we write M/s.

M is complete (completely specified) if for each tuple (s, a)
� S � I there exists transition (s, a, o, s�) � T, otherwise it is
partial. The machine is trivial, denoted �, if T = �. M is
deterministic if for each (s, a) � S � I there exists at most one
transition (s, a, o, s�) � T, otherwise it is nondeterministic. M is
observable if for each tuple (s, a, o) � S � I � O there exists at
most one transition (s, a, o, s�) � T. In this paper we consider
only observable machines, as any complete NFSM can be
transformed into an observable machine. M is a submachine of
M' = (S', s0, I, O, T') iff S � S' and T � T'.

An execution of M/s is a finite sequence of transitions
forming a path from s in the state transition diagram of M. The
machine M is initially connected, if for each state s � S there
exists an execution from s0 to s. A string in (IO)* which labels
an execution of M in some state is called a trace of M. Let Tr(s)
denote the set of all traces of M/s and Tr(M) denote the set of
traces of M. A prefix of trace � � Tr(s) is a trace �� � Tr(s)
such that � = ���. For a trace � � Tr(s), we use s-after-� to
denote the state of M reached after the execution of �, for an
empty trace �� s-after-� = s. We also write M-after-� instead of
s0-after-�.

Given a trace � over alphabets I and O, the I-restriction of
� is obtained by deleting from � all symbols that are not in I,
denoted ��I. The O-restriction of �, denoted���O, is similarly
defined. The length of a trace is defined as the length of its I(O)-
restriction.

Let Out(s, �) be the set of all output sequences produced by
the input sequence � � I* in M/s, i.e., Out(s, �) = {��O |� �
Tr(s), ��I = �}.

Given an input sequence � � I*, states s, s� � S are
equivalent on �, denoted s ≃� s�, if Out(s, �) = Out(s�, �); they
are not equivalent or distinguishable, denoted s � s�� if there
exists � � I* such that Out(s, �) ≠ Out(s�, �). s� is a reduction

of s on �, denoted s� �� s, if Out(s�, �) � Out(s, �); s� is
distinguishable from s w.r.t. the reduction relation, denoted s� � s, if there exists � � I* such that Out(s�, �) ⊈ Out(s, �).

Complete FSMs M and M′ are said to be equivalent, denoted
M � M���if their initial states are equivalent on all input
sequences in I*, i.e., Tr(M) = Tr(M�); M� is a reduction of M,
denoted M� � M, if the initial state of M��is a reduction of that
of M on all input sequence in I*, i.e., Tr(M�) � Tr(M).

Defining similar relations for partial machines in the context
of conformance testing, we assume henceforth that while a
specification FSM might be partial, any implementation is
input-enabled, i.e., it is modelled by a complete FSM.

Given an FSM M, a state s � S, and an input sequence � �
I*, � is said to be defined in s, if there exists a trace � � Tr(s),
such that � = ��I. We use �(s) to denote the set of all defined
input sequences for state s and �(M) for the state s0, i.e., for M.
If M is a complete machine then �(M) = Tr(M)�I = I*. A
sequence �a � I* is said to be undefined in s, if � � �(s) but
�a ���(s). Furthermore, we assume that traces of M are
harmonized [23], i.e., they satisfy the following property. If
there exists a trace � � Tr(M), such that an input a � I is defined
in M-after-� then for all � � Tr(M) such that ��I = ��I, a is
defined in M-after-�. Henceforth, we consider that FSMs have
only harmonized traces. Obviously, complete machines have
only such traces.

Given a possibly partial FSM M and complete FSM M′, M�
is quasi-equivalent to M, denoted M� � M, if the initial state of
M��is equivalent to that of M on all input sequences in �(M); M�
is a quasi-reduction of M, denoted M� � M, if M��is a reduction
of M on all input sequences in �(M). Quasi-equivalence implies
quasi-reduction, but not vice versa. We note that the traditional
trace inclusion is called here the reduction, and the quasi-
reduction is the trace inclusion only for defined input
sequences, as the quasi-reduction allows traces for undefined
sequences as well.

M� is said to be distinguishable from M for the quasi-
equivalence or quasi-reduction if there exists an input sequence
� � �(M) such that Out(s�0, �) � Out(s0, �) or Out(s�0, �) ⊈
Out(s0, �), respectively.

Next we define a fault model as a tuple of a specification
FSM, conformance relation and fault domain [28]. In this paper,
we have that a specification FSM M = (S, s0, I, O, T) can be
partial and nondeterministic, hence the conformance relation is
either the (quasi-) equivalence or (quasi-) reduction and the
fault domain is the universe of all possible complete observable
FSMs over the inputs I and a given number of states n, denoted
FD(n, I). Since the quasi-equivalence and quasi-reduction
become the equivalence and reduction when M is complete, we
shall consider just two fault models <M, �, FD(n, I)> and <M, �, FD(n, I)>.

Given a specification FSM M and its set of defined input
sequences �(M), an input sequence � � �(M) is a test of M; a
finite set of tests is a test suite of M. A test suite is said to be
exhaustive for <M, �, FD(n, I)> or <M, �, FD(n, I)> if for each

364

FSM N � FD(n, I) that is not (quasi-) equivalent to or a (quasi-
) reduction of M, respectively, there exists a test that
distinguishes N from M for the (quasi-) equivalence or (quasi-)
reduction, respectively. Since a test suite contains only defined
input sequences, it is sound and we will call a test suite complete
for a given fault model if it is exhaustive. Such test suites are
also called (preset) checking experiments [24].

III. PASSIVE INFERENCE OF NONDETERMINISTIC
CONJECTURES

Given the input I and output O alphabets, let � be a finite
prefix-closed set of strings in (IO)*. We represent this set by an
FSM. Let W(�) = (X, x0, I, O, P) be an observable tree FSM for
which there exists a bijection f: X � �, such that f(x0) = �, (x,
a, o, x') � P iff f(x)ao = f(x'), called the �-machine.

An FSM C = (S, s0, I, O, T) is called an �-conjecture, if � �
Tr(C). The states of the �-machine W(�) and an �-conjecture
C are closely related to each other. Formally, there exists a
mapping �: X � S, such that �(x) = s0-after-f(x). The mapping
� induces a partition �C on the set X such that x and x� belong
to the same block of the partition �C, denoted x =�C x�, iff �(x)
= �(x�).

Given an �-conjecture C with the partition �C, let D be an
��-conjecture with the partition �D, such that �� � �, we say
that the partition �C is an expansion of the partition �D, if its
projection onto �� coincides with the partition �D.

The set � is said to be nondeterministic if there exist �, ��
� �� such that ��I = ���I and ��O ≠ ���O, otherwise it is
deterministic.

Addressing the problem of inferring nondeterministic FSMs,
we further elaborate our SAT-solving approach [22] starting
from its basic step, passive inference of an FSM. To generalize
the approach to NFSMs, we need to first enhance this step to
deal with nondeterministic traces.

To achieve this, we retain the procedure, formalized in
Algorithm 1[9] to infer a conjecture that differs from already
considered conjectures represented by the partitions on the set
of states of the �-machine. As before, we aim at obtaining an
�-conjecture with a given number of states n. Note that a
minimal number could be found by iteration. The modifications
extend the encoding of deterministic traces into a Boolean
formula formula [22] to a nondeterministic set of traces as
follows.

Let W(�) = (X, x0, I, O, P) be an �-machine. We need to find
an �-conjecture C = (S, s0, I, O, T) with at most n states, i.e., |S|
≤ n. To this end, a mapping �: X � S should fulfill the following
constraints:

�x, y � X: if x � y then �(x) � �(y) and
if Out(x, a) = Out(y, a) for some a � I
then �(x) = �(y) ⇒ �(x)-after-ao = �(y)-after-ao for �o �
Out(x, a) (1)

A mapping � satisfying (1) defines a partition on X and each
block becomes a state of the �-conjecture.

These formulas are then translated to SAT using unary
coding for integer variables, represented by n Boolean variables
vx,0, …, vx,n-1. For each x � X, we have the clause:

 vx,0 �… � vx,n-1 (2)

These clauses mean that each state should be in at least one
block.

For each state x � X and all i, j � {0, …, n - 1} such that i �
j, we have the clauses:

 � vx,i � � vx,j (3)

These clauses mean that each state should be in at most one

block. The clauses 2 and 3 encode the constraint that each state
should be in exactly one block.

We also use auxiliary variables ex,y. For every x, y�� X such
that x � y we have
 �ex,y (4)

This ensures that distinguishable states are not merged into
one state in the �-conjecture.

For every x, y�� X such that Out(x, a) = Out(y, a), we have

 ex,y ⇒ ex-after-ao,y-after-ao
for �o � Out(x, a) (5)

This ensures that the successors of two merged states for
each input/output pair are also merged and the resulting FSM is
observable.

For every x, y�� X and all i � {0, …, n - 1}

 ex,y � vx,i ⇒ vy,i (6)
 �ex,y � vx,i ⇒ �vy,i (7)

The resulting Boolean formula is the conjunction of clauses
(2) - (7). To check its satisfiability one can use an existing
solver, calling the function call-solver(formula), as follows.

Algorithm 1. Infer_conjecture(�, n, �)
Input: A set of traces �, an integer n, and a set of partitions

�
Output: An �-conjecture with at most n states such that its

partition does not expand any partition in � or False.
1. formula = conjunction of the clauses (2) - (7)
2. for all � � � do
3. clause = False
4. for all x, y such that x =� y do
5. clause = clause � �ex,y
6. end for
7. formula = formula � clause
8. end for
9. return call-solver(formula)

365

If a solution exists then we have an �-conjecture with n or
fewer states. The latter is obtained from the determined
partition on X.

In the context of conformance testing and inference of
NFSMs, which are the focus of this paper, we have no �-
machine, as we need to determine traces which define a
checking experiment or infer an unknown NFSM. Building a
checking experiment, the number of states of an
implementation machine in a chosen fault model can be
assumed to be that of a given specification NFSM or even
exceeding it by a given number. Active inference, i.e., learning
of an NFSM, also needs a bound on the possible number of
states of a black box in order to be able to terminate the process.
Knowing the maximal number of states is also needed to
terminate random testing and conformance testing which
approximate equivalence queries in all the existing learning
methods.

IV. TEST DERIVATION FROM NONDETERMINISTIC FSM
Addressing the conformance testing problem, we assume that a
specification machine M = (S, s0, I, O, T) could be
nondeterministic and partial (with harmonized traces), while
the fault domain FD(n, I) contains complete FSMs. To simplify
our discussion, we also assume that the fault domain FD(n, I)
includes nondeterministic machines only if the specification is
nondeterministic.

In this section we propose a method for offline testing.
Online testing is addressed in Section 6.

Considering quasi-equivalence as a conformance relation we
need to compare the behavior of a complete implementation
machine to that of its possibly partial specification FSM. To this
end, we define their intersection, called here the product for
quasi-equivalence.

Given two FSMs M = (S, s0, I, O, T) and M′ = (S′, s′0, I, O,
T′), the FSM (P, p0, I, O, H), where p0 = (s0, s'0) such that P and
H are the smallest sets satisfying the following rule: if (s, s') �
P, Out(s, a) = Out(s�, a), (s, a, o, t) � T, (s', a, o, t') � T', then
(t, t') � P and ((s, s'), a, o, (t, t')) � H, is called the product for
quasi-equivalence, denoted M �� M′. For complete machines,
we shall also use M �� M′ to denote the product.

The definition extends the definition of a product (aka
intersection) for deterministic machines. Undefined input
sequences of the product can indicate that the given machines
are not quasi-equivalent, as the following lemma states.

Lemma 1. M� ≥ M if and only if �(M) = �(M �� M′).
Proof. If M� ≥ M, then by definition, for each � ���(M),

Out(s0, �) = Out(s�0, �). Let M ���M� = (P, p0, I, O, H). Then by
construction, we know that Out(p0, �) = Out(s0, �) = Out(s�0,
�). So �(M) = �(M ���M�).

Assume now that �(M) = �(M �� M�). So if � ���(M) then
� ���(M �� M�) and then by construction Out(s0, �) = Out(s��,
�). Then by definition, M� ≥ M. ∎

We use this property to conclude that a conjecture is quasi-
equivalent to the specification NFSM.

The following procedure builds a complete test suite
incrementally. It extends the one developed recently [22] in
several aspects:
� it derives checking experiments instead of checking

sequences and thus does not need FSMs be strongly
connected,

� the specification FSM can be nondeterministic, moreover,
it can be a partial machine, while previously we considered
only complete and deterministic machines.

The procedure iteratively generates from a current set of tests
a conjecture that has not yet been considered and adds a new
test if the conjecture is not quasi-equivalent to the specification
machine. It terminates when no more conjecture with at most n
states distinguishable from the specification FSM is left.

Algorithm 2. Generating a complete test suite for the fault

model <M, ≥, FD(n, I)>
Input: An FSM M = (S, s0, I, O, T) and n, n � |S|.
Output: A complete test suite for the fault model <M, ≥,

FD(n, I)>
1. � :=��
2. ��:= �
3. � := �
4. while a conjecture C is returned by Infer_conjecture(�, n,

�) do
5. if �(M) = �(M ���C) then
6. ����������:= � � {�C}
7. else
�� Determine a shortest trace � such that ��I � �(M) �

�(M �� C) and state��M �� C)-after-� has no transition
for�some input a while state M-after-� has�

9. � := � � ���Ia�
10. � := � � �� � Tr(M) � ��I = ��Ia}
11. end if
12. end while
13. return �

Algorithm 2 returns a set of input sequences ��that is a

checking experiment, i.e., a complete test suite for the fault
model <M, ≥, FD(n, I)>. It means that any implementation of
the fault domain FD(n, I) to be conforming for the quasi-
equivalence must produce all the output sequences of the
specification machine M in response to each test in � and only
them. On the other hand, if it has no output sequences M cannot
produce, but fails to produce all the output sequences of M in
response to each test then it is a quasi-reduction of M, as stated
in the following.

Theorem 2. Given an FSM M and a test suite � generated

by Algorithm 2, for each FSM N � FD(n, I),
� N ≥ M if and only if N �� M

366

� N � M if and only if N �� M.
Proof. N � M implies N �� M because �����(M). Let us

demonstrate that N �� M implies N � M. Assume that for some
complete FSM N = (S′, s′0, I, O, T′), it holds that N �� M, but N
is not quasi-equivalent to M. According to the post-condition of
Infer_conjecture(�, n, �), there is no more conjecture from the
set FD(n, I) left that is distinguishable from M. The FSM N
could have been excluded if its partition was placed in the set
�, but it is not quasi-equivalent to M, so its partition is not in
�. Then N � FD(n, I), i.e., it has more states than n. A
contradiction proves the statement.

N � M implies N �� M because ���� �(M). Let us
demonstrate that N �� M implies N � M. Assume that for some
complete FSM N = (S′, s′0, I, O, T′), it holds that N �� M, but N
is not a quasi-reduction to M i.e., there exists an � ���(M) such
that Out(N, �����Out(M, ��� So �(M) � �(M ���N). The FSM
N could have been excluded if its partition was placed in the set
�, but it is not quasi-equivalent to M, so its partition is not in
�. Then N � FD(n, I), i.e., it has more states than n. A
contradiction proves the statement. ∎

Algorithm 2 can also be used to check whether a given test
suite is complete for the fault model <M, �, FD(n, I)> and to
find additional tests to make it complete, if needed. It is
sufficient to initialize � to the given test suite.

Fig. 1. Constructing a checking experiment for the fault model <M, �,
FD(n, I)>.

Example. Consider the FSM M in Fig. 1 (a), it is partial and
nondeterministic. We let n be four, the number of states in M
and use Algorithm 2. In this and other examples, for brevity, we
present mostly the intermediate conjectures and tests used to
create them. Also to simplify the formulas we do not include all
the prefixes in the sets � and �.

Inputs a and b lead to a complete �-conjecture C1 obtained
from the set of traces � = {a1, b0, b1}. It is a single state
machine with three transitions. � = {a, b}. The product M ��
C1 has a state (M �� C)-after-a1b0, where input a is not defined,

1 We separate elements of blocks by comma and blocks by semicolon.

since the FSM M has output 0 for this input, but C1 has output
1. The input sequence aba is included into the set � = {aba, b}.
We have that � = {a1, b0, b1} � {a1b0a0, a1b1a1} = {a1b0a0,
a1b1a1, b0, b1}. The conjecture C2 is shown in Fig. 1 (b). The
product M ���C2 has a state (M ���C2)-after-b0, where input a
is not defined, since the FSM M has output 1 for this input, but
C2 has output 0. The input sequence ba is included into the set
� = {aba, ba}. Then traces b0a1, b1a1 are added to � = {b0,
b1, a1b0a0, a1b1a1} � {b0a1, b1a1} = {a1b0a0, a1b1a1,
b0a1, b1a1}. The conjecture C3 is shown in Fig. 1 (c). The
product M ���C3 has a state (M ���C3)-after-a1b0a0, where
input a is not defined, since the FSM M has output 1 for this
input, but C3 has output 0. The input sequence abaa is included
into the set � = {abaa, ba}. Traces a1b1a1a1, a1b0a0a1 are
added to � = {a1b0a0, a1b1a1, b0a1, b1a1} � {a1b1a1a1,
a1b0a0a1} = {a1b1a1a1, a1b0a0a1, b0a1, b1a1}. Fig. 1 (d)
shows the conjecture C4 that is quasi-equivalent to M, since
�(M) = �(M ���C4). We determine a partition on the states of
the �-machine induced by C4, �C4 = {�, b0, b1, a1b1a1,
a1b0a0; a1, a1b0, b0a1, b1a1, a1b1a1a1, a1b0a0a1; a1b1}1,
by grouping all traces leading to each state and include it into
��= {�C4}. Updated constraints result in a new conjecture C5,
shown in Fig. 1 (e), that is also quasi-equivalent to M, since
�(M) = �(M ���C5). We add to � the partition induced by C5,
�C5 = {�, b0, b1, a1b1a1, a1b0a0; a1, a1b1, b0a1, b1a1,
a1b1a1a1, a1b0a0a1; a1b0}. Now ��= {�C4, �C5}. The updated
constraints are not satisfiable. Therefore, the set of input
sequences � = {abaa, ba} is a checking experiment for the fault
model <M, ≥, FD(n, I)>. ∎

Compared to the existing methods for test generation from

nondeterministic FSMs [15], [12], [24] the proposed method
exhibits the following advantages:
� It is the only method which can check completeness of a

given test suite for an NFSM and the quasi-equivalence
relation.

� It is also the only incremental test generation method for
NFSMs. Test generation process can thus be terminated to
avoid test explosion and fault coverage of the resulting tests
can be estimated by considering intermediate conjectures.

� The method eliminates several potential sources of test
redundancy inherent to the existing methods. In fact, to
determine each test it solves only the shortest path problem,
while the existing methods construct tests from fragments
such as transfer sequences to reach states, state identification
and traversal sequences so each fragment is determined as a
(approximate) solution of a (non-trivial) optimization
problem [32], [27].

V. ACTIVE LEARNING OF NONDETERMINISTIC FSM
We now elevate our approach for active learning of
deterministic FSM that is based on SAT solving to
nondeterministic machines.

a/0

b/0

a,b/1

(b)

b/0
a/0

b/1
a/1

b/0,1

a/1

0

1 23

a
(a)

a,b/0
a/1
b/0,1

(c)

b/1

b/0

a/1

b/0,1

(d)
a/0

b/1

a/1

b/1

a/1

b/0,1

(e)
a/1

b/0

a/0

367

When dealing with a black box NFSM N, we rely, as before,
on the traditional complete testing assumption, which sets a
bound on the number of repetitive applications of input
sequences in output queries. Using output queries we can still
determine all the traces triggered in N by an input sequence,
even though the whole set of traces Tr(N) is a priory unknown.
Thus, given a sequence � � I*, the set of traces �� � Tr(N)�����I
= �} can be determined using the black box.

The following algorithm follows the steps of Algorithm 2,
the main difference is that in the absence of a specification
machine to check equivalence, it uses a current conjecture
instead and when non-equivalence is established to determine a
counterexample trace it uses the black box.

Algorithm 3. Learning an NFSM and determining its
checking experiment for the equivalence relation

Input A black box that behaves like an unknown FSM N
over the input set I with at most n states

Output The FSM N and a complete test suite for the fault
model <N, �, FD(n, I)>

1. � :=��
2. ��:= �
3. � := �
4. C := � (the trivial FSM)
5. while a conjecture D is returned by Infer_conjecture(�, n,

�) do
6. if C ���D is complete then
7. �:= � � {�D}
8. else
9. Determine a shortest trace � such that state (C ���D)-

after-� has no transition for some input a � I
10. ��:= �������Ia�
11. � := ������ � Tr(N)�����I = ��Ia} * the black box N is

used to obtained new traces caused by the input sequence
��Ia *

12. if ��⊄�Tr(C) then
13. C := Infer_conjecture(�, n, �)
14. end if
15. end if
16. end while
17. return C and �

Theorem 3. If a black box behaves like an FSM N with the
input set I and n states, Algorithm 3 infers it and returns a
complete test suite for the fault model <N, ≅, FD(n, I)>.

Proof. When Algorithm 3 terminates, there is no more a
satisfiable conjecture Infer_conjecture(�, n, �). So, for each N�
� FD(n, I), such that � � Tr(N�), its partition expands a
partition in �. This means that N ���N� is complete. Then ��is
a complete test suite for the fault model <N, �, FD(n, I)>. The
termination is ensured by the fact that in each execution of the
loop, the number of satisfiable conjectures Infer_conjecture(�,
n, �) strictly decreases. ∎

Note that the procedure may have a jumpstart if provided

with some input sequences which are a priori known to expose
a rich behavior of the unknown NFSM. It may well be the case
that the domain expert has some background knowledge of at
least some features of the machine to infer.

Fig. 2. Illustrating active inference of an NFSM.

Example. We illustrate Algorithm 3 using an NFSM N

shown in Fig. 2 (a), assuming that the black box has at most
four states, so n = 4.

a/1
a/0

b/1 (b)

a/1
b/0

a/2

b/0,1

a/1 a/0

b/1

b/0

a/2 a/1

a/1

a/2

b/1 (a)

ab/1

a/1

b/1
a/0

b/0
a/1 /11 b/0

(c)

b/0,1
a/1

a/0

b/1 (d)

a/1

ab/0 a/2 b/0,1

a/1

a/0

b/1 (e)

a/1

ab/0 a/2
b/0,1 a/1

a/2

b/1 (f)

a/1

b/0 a/0
b/0,1

a/1

a/2

b/1
(g)

a/1

b/0
a/0 b/0

b/1

b/0 a/2

b/1
b/1

a/1

(h)

b/0

a/0

b/0
a/1

a/1 a/1
b/1

b/0
a/2

b/1
b/1

a/1

(i)

b/0

a/0

a/1

b/1 a/1

b/0
a/2

b/1
b/1

a/1

(j)

b/0

a/0

a/1

a/1 b/1
b/0

a/2

b/1

b/1

a/1

(k)

2 b/0
a/0

a/1

a/1

b/1

368

The first conjecture C1, obtained after we applied the inputs
in ��= {a, b} to the black box, observed the traces ����{a0,
a2, b1} � Tr(N), and resolved the constraints, is a single state
NFSM with three transitions. The conjecture is regenerated
again as D1. The partition �D1 = (�, a0, a2, b1} is included into
the set �.

The conjecture D2 is a two-state machine, a2 and b1 label
self-looping transitions in the initial state, a0 labels another
transition to the second state. The product C1 ���D2 has no
transitions in the state (C1 ���D2)-after-a0, so we use now aa
to obtain ��= {aa, b} and ����{a0a1, a2a1, b1}. The
conjecture C2 is a two-state NFSM, the initial state has a self-
looping transition labeled with b1; a0 and a2 label transitions
to the second state, which has a self-looping transition with
a1.

To complete conjectures, we add the sequence ab to �,
obtaining ��= {aa, ab, b}. The set of observed traces of N
becomes ����{a0a1, a0b0, a2a1, a2b0, a2b1, b1}. The
conjecture C3 has now three states, it is shown in Fig. 2 (b).
The conjecture is regenerated again as D3. The partition �D3 =
{�, b1; a0, a0a1, a0b0; a2, a2a1, a2b0, a2b1} is included into
the set �.

The conjecture C4 is shown in Fig. 2 (c). (C4 ���D3)-after-
a0a1 has no transition on a; in fact, two machines are
distinguished by the input sequence aaa: {a0a1a1, a2a1a1}
� Tr(C3), but {a0a1a0, a2a1a2, a2a1a0} � Tr(D1). The input
sequence is added into ��= {aaa, ab, b}. The set of observed
traces of N becomes ����{a0a1a1, a0b0, a2a1a1, a2b0, a2b1,
b1}.

The conjecture C5 is shown in Fig. 2 (d). (C5 ���D3)-after-
a0b0 has no transition on b; we determine the input sequence
abb that distinguishes C5 and D3. ��becomes {aaa, abb, b}.
The set of observed traces of N is now ����{a0a1a1, a0b0b1,
a2a1a1, a2b0b1, a2b1b1, b1}. ��⊂�Tr(C5), then the
conjecture is generated again as D4. The partition �D4 = {�,
b1, a2b0, a2b1, a2b0b1, a2b1b1, a0b0, a0b0b01; a0, a0a1,
a0a1a1; a2, a2a1, a2a1a1} is added into the set �.

The conjecture D5 is shown in Fig. 2 (e). (C5 �� D5)-after-
a0a1 has no transition on b, in fact, the two machines are
distinguished by the input sequence aab: {a0a1b0, a2a1b0,
a2a1b1} � Tr(C5), but {a0a1b0, a0a1b1, a2a1b0, a2a1b1} �
Tr(D5). The input sequence aab is added into ��= {aaa, aab,
abb, b}. The set of observed traces of N is now ����{a0a1a1,
a0a1b0, a0b0b1, a2a1a1, a2a1b0, a2b0b1, a2b1b1, b1}.

The conjecture C6 is shown in Fig. 2 (f). When it is
generated again as D6 its partition �D6 = {�, b1, a0b0, a0b0b1,
a0a1b0, a2b0, a2b1, a2b0b1, a2b1b1, a2a1b0; a2; a0, a0a1,
a0a1a1, a2a1, a2a1a1} is added into the set �.

Fig. 2 (g) shows the conjecture D7. (C6 ���D7)-after-a2b1
has no transition on a, in fact, the two machines are
distinguished by the input sequence aba: {a0b0a0, a0b0a2,
a2b0a0, a2b0a2, a2b1a0, a2b1a2} � Tr(C6), but {a0b0a0,
a0b0a2, a2b0a0, a2b0a2, a2b1a1} � Tr(D7). The sequence
aba distinguishing C6 and D7 is added into ��= {aaa, aab,

aba, abb, b}. The set of observed traces of N is now
����{a0a1a1, a0a1b0, a0b0a1, a0b0b1, a2a1a1, a2a1b0,
a2b0a1, a2b1a0, a2b1a2, a2b0b1, a2b1b1, b1}.

This set yields a new conjecture C7 shown in Fig. 2 (h).
When it is generated again as D8 its partition �D8 is added into
the set �. A subsequent conjecture generation results in D9
shown in Fig. 2 (i). The product C7 ��� D9 has the input
sequence abaa that distinguishes C7 and D9. ��becomes {aaa,
aab, abaa, abb, b}. ����{a0a1a1, a0a1b0, a0b0a1a1,
a0b0b1, a2a1a1, a2a1b0, a2b0a1a1, a2b1a0a1, a2b1a2a1,
a2b0b1, a2b1b1, b1}.

C8 is shown in Fig. 2 (j). When it is generated again as D10
its partition �D10 is added into the set �. Fig. 2 (k) shows a
next conjecture D11. (C8 ��� D11)-after-a0b0a1a1 has no
transition on b, in fact, the two machines are distinguished by
the input sequence abaab. ��becomes {aaa, aab, abaab, abb,
b}. The observed traces of N are ����{a0a1a1, a0a1b0,
a0b0a1a1b0, a0b0b1, a2a1a1, a2a1b0, a2b0a1a1b0, a2b0b1,
a2b1a0a1b0, a2b1a2a1b0, a2b1b1, b1}. �he generated
conjecture C9 is isomorphic to the NFSM N in Fig. 2 (a).
Adding its partition to � results in insatisfiable constraints.
The set ��= {aaa, aab, abaab, abba, b} is a complete test
suite for the fault model <N, �, FD(n, I)>. ∎

Using this example, we now compare our approach to the

traditional approach of simulating equivalence queries by
output queries using conformance testing methods [21], [31].
The W-method applied to the NFSM in Fig. 2 (a) returns a
complete test suite of 17 tests of the total length 70, reset
included. These tests are used only in the final step of
learning, each of a dozen of intermediate conjectures would
need a test suite of a comparable size as well. In the worst case
situation, all of these test suites would have to be executed as
test queries. Algorithm 3 returns a test suite of just five tests
of the total length 21, reset included.

VI. ADAPTIVE TESTING AS ACTIVE LEARNING WITH A
SPECIFICATION NFSM

We now consider a problem that is more general than the one
considered in the previous section. Namely, given a complete
(specification) NFSM M = (S, s0, I, O, T) and a black box that
behaves like a reduction of M with at most n states, learn the
reduction.

On the one hand, this problem reduces to the classical FSM
inference problem when M is a single state chaos machine such
that Tr(M) = (IO)*. Traditional work addresses the
deterministic case, while in Section 5 we proposed an approach
to learn nondeterministic machines; in either case, there was in
fact no need to consider the chaos machine, as it contains all the
possible behaviors. If, however, the NFSM M is less
nondeterministic than the chaos machine then it does constrain
the solution space for the learning problem. Adding this
machine to the learning problem’s setup might be useful in
practice when the learner has some hypotheses about the
behavior the system to be learned, which are then formalized in

369

an NFSM. For example, the learner may have its earlier model
and some information about possible updates.

On the other hand, research on adaptive conformance testing
addresses a similar problem, testing a deterministic
implementation from its NFSM specification [12], [6]. This is,
in fact, also a special case of the more general learning problem
of an unknown reduction of a specification machine, since only
deterministic implementations are allowed.

To offer a unified solution for NFSM learning and adaptive
conformance testing problems, we slightly adjust the above
formulation as follows.

Given a complete NFSM M = (S, s0, I, O, T) and a black box
that behaves like an FSM N � FD(n, I), learn N, if it is a
reduction of M or determine a test that distinguishes them,
otherwise. The remaining of this section aims at solving this
problem.

To simplify the discussions, we focus on complete machines.
At the same time, we define an FSM product for quasi-
reduction, which becomes the reduction relation for complete
FSMs.

Given FSMs M = (S, s0, I, O, T) and M′ = (S′, s′0, I, O, T′),
such that �(M) � �(M′), the FSM (P, p0, I, O, H), where p0 =
(s0, s'0) such that P and H are the smallest sets satisfying the
following rule: if (s, s') � P, Out(s�, a) � Out(s, a), o � Out(s�,
x), (s, a, o, t) � T, (s', a, o, t') � T', then (t, t') � P and ((s, s'),
a, o, (t, t')) � H, is called the product for quasi-reduction,
denoted M′ �� M. The difference with the product for quasi-
equivalence defined in Section 5 is as follows. The product for
quasi-reduction has a transition for each common output and
does not require that both machines have the same outputs for
each common input, while the product for quasi-equivalence
does require this.

Lemma 4. M� � M if and only if �(M) = �(M′ �� M).
Proof. If M� � M, then by definition, for each � ���(M),

Out(s0, �) � Out(s�0, �). Let M ���M�= (P, p0, I, O, H). Then by
construction, we know that Out(p0, �) � Out(s�0, �). So �(M)
= �(M′ �� M).

Assume now that �(M) = �(M �� M�). If � ���(M) then �
���(M �� M�) and by construction Out(p0, �) = Out(s��, �). So
M� � M. ∎

The following procedure, similar to Algorithm 3, aims at

determining distinguishable conjectures as reductions of the
specification machine in order to formulate an output query.
The latter are answered by the black box, whole traces are used
to refine conjectures. It differs from Algorithm 3 in the
following features
� it verifies whether a conjecture is a reduction of the

specification machine
� it takes care of invalid outputs produced by a black box
� it employs both types of products for equivalence and

reduction.

Algorithm 4. Learning a reduction of a known NFSM M
Input: A complete NFSM M = (S, s0, I, O, T) and black box

that behaves like an FSM N � FD(n, I)
Output: The FSM N if it is a reduction of M or a test that

distinguishes them, otherwise
1. � :=��
2. � := �
3. ��:= �
4. D := � (the trivial FSM)
5. while a conjecture C is returned by Infer_conjecture(�, n,

�) do
6. if C �� M is complete then
7. if C �� D is complete then
8. ��:= � � {�C}
9. else

��� Determine a shortest trace � such that state (C �� D)-
after-� has no transition for some input a � I �

11. if Out(N-after-�, a)\Out(M-after-�, a) � � then
12. return “��Ia distinguishes N and M”
13. else
14. ��:= ����{��Ia}
15. � := ������ � Tr(N)�����I = ��Ia}
16. if � ��Tr(D) then�
17. D := Infer_conjecture(�, n, �)
18. end if
19. end if
20. end if
21. else
22. Determine a shortest trace � such that state (C �� M)-

after-� has no transition for some input a � I
23. if Out(N-after-�, a)\Out(M-after-�, a) � � then
24. return “��Ia distinguishes N and M”
25. else
26. ��:= ����{��Ia}
27. � := ������ � Tr(N)�����I = ��Ia}
28. if � ��Tr(D) then�
29. D := Infer_conjecture(�, n, �)
30. end if
31. end if
32. end if
33. end if
34. return D and �

Theorem 5. Given FSMs M = (S, s0, I, O, T) and N, N �
FD(n, I), Algorithm 4 learns the FSM N if it is a reduction of
M and returns a test that distinguishes N and M, otherwise.

Proof. If Algorithm 4 returns a distinguishing test, then
Out(N-after-�, a)\Out(M-after-�, a) � � for some � and a and
so, “��Ia distinguishes N and M”. Assume now that Algorithm
4 returns an FSM N� such that Tr(N�) ≠ Tr(N). If Algorithm 4
returns an FSM, this means that “Infer_conjecture(�, n, �)”
cannot find a conjecture. Since the set � contains only traces
from Tr(N), if “Infer_conjecture(�, n, �)” cannot find a
conjecture then � contains a partition banning the conjecture

370

N. A partition is added to the set ��only if “C �� D is complete”.
So at one point, N �� D is complete, i.e., D is a reduction of M.
When N �� D is complete, D will never change again because
� ��Tr(D). The termination of the algorithm is assured by the
fact that in each loop, at least one conjecture is banned. ∎

Corollary 6. If N � M or M is a chaos machine then the set

of input sequences returned by Algorithm 4 is a complete test
suite for the fault model <N, �, FD(n, I)>.

Example. We illustrate Algorithm 4 using a complete NFSM
M shown in Fig. 3 (a) and a black box assuming that it behaves
as a complete FSM N, shown in Fig. 3 (b), so we assume that
n = 2.

The complete conjecture D1 is obtained from the set of
traces � = {a0, b0} using the set of input sequences � = {a,
b}. It is a single state machine with two transitions that is
generated again as the conjecture C1. The product M �� C1 is
a complete machine, so is the product C1 �� D1 and the
partition �C1 = (�, a0, b0} is included into the set �.

In the next iteration, Infer_conjecture(�, n, �) returns the
conjecture C2 as a two-state machine, a0 labels a self-looping
transition in the initial state, b0 labels another transition to the
second state. The product has a state (M �� C2)-after-b0,
where input a is not defined. The input sequence ba is
included into the set � = {a, ba}.

The black box produces trace b0a1 when the sequence ba
is applied, which is allowed by the specification machine M.
� = {a0, b0a1}, � ⊄�Tr(D1) and D1 is refined to D2 that is a
two-state machine, a0 labels a self-looping transition in the
initial state, b0 labels a transition to the second state, a1 labels
a transition back to the initial state. D2 is generated again as
the conjecture C3. The product’ state (M �� C3)-after-b0 has b
not defined. The input sequence bb is included into the set �
= {a, ba, bb}. The black box produces trace b0b1 in response
to bb, which is allowed by the specification machine M. � =
{a0, b0a1, b0b1}, � ⊄�Tr(D2) and D2 is refined to D3 shown
in Fig. 3 (c). D3 is generated again as the conjecture C4. The
product M �� C4 is complete, so is the product C4 �� D3 and
the partition �C4 = {�, a0, b0b1; b0, b0a1} is included into the
set �. The next conjecture generated from the same set of
traces is C5 shown in Fig. 3 (d). The product M �� C5 is
complete, the product C5 �� D3 is not, since the state (C5 ��
D3)-after-a0 has undefined input a. The sequence aa
distinguishes C5 and D3. Out(N-after-a0, a) = {0}, determined
by applying aa to the black box FSM N. � = {aa, ba, bb}. �
= {a0a0, b0a1, b0b1}, � ⊄�Tr(D3) and D3 is refined to D4
shown in Fig. 3 (e), regenerated then as C6. The product M ��
C6 is complete, so is the product C6 �� D4 and the partition �C6
= {�, a0, a0a0; b0, b0a1, b0b1} is included into the set �.

The next conjecture generated from the same set of traces
is C7 shown in Fig. 3 (b) that is in fact the unknown FSM. The
product M �� C7 is complete, the product C7 �� D4 is not, since

the state (C7 �� D4)-after-b0b1 has undefined input a. The
sequence bba distinguishes C7 and D4. Out(N-after-b0b1, a) =
{0}, determined by applying bba to the black box FSM N. �
= {aa, ba, bba}. � = {a0a0, b0a1, b0b1a0}, � ⊄�Tr(D4) and
D4 is refined to the conjecture D5 shown in Fig. 3 (b) that is
the unknown FSM. C7 is generated again, the products M ��
C7 and C7 �� D5 are complete and the partition �C7 = {�, a0,
a0a0, b0b1, b0b1a0; b0, b0a1} is included into the set �. The
algorithm terminates, since the resulting constraints are not
satisfiable. The FSM N is learned, and the set of tests � = {aa,
ba, bba} is returned.

We compare this result with the test suite obtained by using
the SC-method [24] for the specification FSM M in Fig. 3 (a)
to generate a complete test suite for the fault model <M, �,
FD(n, I)>. It contains 13 tests of the total length of 65.
Adapting this test suite to the given implementation FSM N,
a specification refinement method [26] yields a test suite of
six tests of the total length of 18. Algorithm 4 returns three
tests of the total length of 10. ∎

The save could be explained by considering different goals
of the two approaches. The adaptive testing approach needs
to verify whether a given implementation is a reduction of the
specification, while a complete test suite, i.e., a checking
experiment has to verify whether each and every
implementation in FD(n, I) is a reduction, which requires
more tests.

Fig. 3. Specification FSM M (a), black box FSM N (b)
and intermediate conjectures (c), (d) and (e).

Compared to the existing methods for adaptive testing from
NFSMs, the proposed method has the following advantages:
� It does not need to check whether the specification NFSM is

reduced or has deterministically (or definitely) reachable
states.

� It does not need any state identification, transfer and
traversal sequences required by the existing methods.

� It does not only yield a conformance test suite but also
identifies the implementation NFSM if it is a reduction of a
given specification NFSM.

a,b/0,1

b/0

b/2

(a)
a/0

a/1 b/0,1

a/0,2

a/1

b/0

a/0

(b)

b/1

b/1

b/0

a/0

(c)

a/1
b/1 b/0

a/0

b/1
(d)

a/1 b/1
b/0

a/0 a

(e)

a/1

371

VII. CONCLUSION
We considered the problems of active learning and
conformance testing of systems modeled by nondeterministic
Mealy machines. We proposed a unified SAT-based approach
addressing these problems which elevates the approach
originally proposed for deterministic FSMs and checking
sequences to partial nondeterministic machines and checking
experiments. The learning approach neither needs a Teacher
nor uses it a conformance tester to simulate/approximate
equivalence queries substituting a Teacher, as opposed to all
previous work. The idea behind this approach is to iteratively
infer from a current set of traces not one, but two inequivalent
(distinguishable) conjectures, use an input sequence
distinguishing them in output query, and update a current trace
set with an observed trace to obtain a new pair of
distinguishable conjectures, if possible. We presented an
extension of the encoding of the passive inference of FSMs to
a SAT formulation that allows to deal with nondeterministic
traces. The proposed approach demonstrates that active
learning and conformance testing are in fact two sides of the
same coin not only for deterministic but also for
nondeterministic Mealy machines. We also generalized the
classical active learning problem by adding a nondeterministic
specification FSM, which constrains the solution space. The
setup unifies the learning and adaptive testing problems for
NFSMs and makes them equisolvable with the proposed
approach.

Our current work is to complete the development of a
prototype tool for learning and testing NFSMs. The tool should
allow us to investigate how various encoding schemes effect the
performance of the proposed approach.

ACKNOWLEDGMENT
This work was partially supported by MEI (Ministère de

l’Économie et Innovation) of Gouvernement du Québec and
NSERC of Canada.

REFERENCES
[1] A. Abel and J. Reineke, “MeMin SAT-based exact minimization of

incompletely specified Mealy machines,” in IEEE/ACM International
Conference on Computer-Aided Design, 2015, pp. 94-101.

[2] K. Ali, and A. Tacchella, “Learning nondeterministic Mealy
machines,” in International Conference on Grammatical Inference, 2014,
pp. 109-123.

[3] D. Angluin, “Learning regular sets from queries and counterexamples.”
Information and Computation, 75(2), 1987. pp. 87–106.

[4] T. Berg et al. “On the correspondence between conformance testing and
regular inference,” in Proceedings of the 8th International Conference on
Fundamental Approaches to Software Engineering, LNCS 3442, 2005,
pp. 175-189.

[5] C. De la Higuera, Grammatical inference: learning automata and
grammars. Cambridge University Press, 2010.

[6] M. Dorofeeva, A. Petrenko, M. Vetrova, N. Yevtushenko, “Adaptive test
generation from a nondeterministic FSM,” Radioelektronika i
informatika. No. 3, 2004, pp. 91-95.

[7] K. El-Fakih, R. Groz, M. N. Irfan, M. Shahbaz, “Learning finite state
models of observable nondeterministic systems in a testing context,” In
Proceedings of the 22nd IFIP International Conference on Testing
Software and Systems (Short Papers), 2010. pp. 97-102.

[8] E. M. Gold. “Complexity of automaton identification from given data,”
Information and control, 37(3), 1978, pp. 302-320.

[9] M. J. Heule and S. Verwer. “Software model synthesis using satisfiability
solvers. Empirical Software Engineering,” 18(4), 2013, pp. 825–856.

[10] R. M. Hierons, “Adaptive testing of a deterministic implementation
against a nondeterministic finite state machine,” The Computer Journal,
41(5), 1998, pp. 349-355.

[11] R. M. Hierons, “Generating candidates when testing a deterministic
implementation against a non-deterministic finite-state machine,” The
Computer Journal, 46(3), 2003, pp. 307-318.

[12] R. M. Hierons, “Testing from a non-deterministic finite state machine
using adaptive state counting,” IEEE Transactions on Computers, 53(10),
2004, pp. 1330-1342.

[13] T. Kam, T. Villa, R. K. Brayton, A. L. Sangiovanni-Vincentelli, “Theory
and algorithms for state minimization of nondeterministic FSMs,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 16, no. 11, 1997, pp. 1311–1322.

[14] J. Kella, “Sequential machine identification,” IEEE Transactions on
Computers, 100(3), 1971, pp. 332-338.

[15] G. L. Luo, G. v. Bochmann, A. Petrenko, “Test selection based on
communicating nondeterministic finite-state machines using a
generalized Wp-method”, IEEE Transactions on Software Engineering,
20(2), 1994, pp. 149–161.

[16] R. Milner, A calculus of communicating systems, Springer Verlag, 1980.
[17] O. Niese, An integrated approach to testing complex systems. Ph.D.

thesis, Dort-mund University of Technology, 2003.
[18] J. Oncina and P. Garcia, “Identifying regular languages in polynomial

time” In Advances in Structural and Syntactic Pattern Recognition. Series
in Machine Perception and Artificial Intelligence, vol. 5, 1992, pp. 99–
108.

[19] A. L. Oliveira and J. Silva, “Efficient algorithms for the inference of
minimum size DFAs,” Machine Learning 44, no.1, 2001, pp. 93-119.

[20] W. Pacharoen, T. Aoki, P. Bhattarakosol, A. Surarerks, “Active learning
of nondeterministic finite state machines,” Mathematical Problems in
Engineering, vol. 2013, 2013, pp. 1-11.

[21] D. Peled, M. Y. Vardi, M. Yannakakis, “Black-box checking,” In Formal
Methods for Protocol Engineering and Distributed Systems.
FORTE/PSTV, Kluwer, 1999, pp. 225�240.

[22] A. Petrenko, F. Avellaneda, R. Groz, C. Oriat, “From passive to active
FSM inference via checking sequence construction,” In Proceedings of
the IFIP International Conference on Testing Software and Systems.
Springer, 2017, pp. 126-141.

[23] A. Petrenko, N. Yevtushenko, A. Lebedev, A. Das, “Nondeterministic
State Machines in Protocol Conformance Testing,” Protocol Test
Systems, 1993, pp. 363-378.

[24] A. Petrenko and N. Yevtushenko, “Conformance tests as checking
experiments for partial nondeterministic FSM,” In Proceedings of the 5th
International Workshop on Formal Approaches to Testing of Software,
LNCS 3997, 2005, pp. 118-133.

[25] A. Petrenko and N. Yevtushenko, “Adaptive testing of deterministic
implementations specified by nondeterministic FSMs,” In Proceedings of
the 23d IFIP International Conference on Testing Software and Systems,
LNCS 7019, 2011, pp. 162-178.

[26] A. Petrenko and N. Yevtushenko, “Refining specifications in adaptive
testing of nondeterministic finite state machines,” In Vestnik Tomskogo
gosudarstvennogo universiteta, 1(6), 2009, pp. 99-114.

[27] A. Petrenko and N. Yevtushenko, “Adaptive testing of nondeterministic
systems with FSM,” In Proceedings of the IEEE 15th International
Symposium on High-Assurance Systems Engineering, 2014, pp. 224-228.

[28] A. Petrenko, N. Yevtushenko, G. v. Bochmann, “Testing deterministic
implementations from their nondeterministic specifications,” In
Proceedings of the IFIP Ninth International Workshop on Testing of
Communicating Systems, 1996, pp. 125-140.

[29] M. Shahbaz and R. Groz, “Inferring Mealy machines,” In Proceedings of
the 2nd World Congress on Formal Methods, Springer, 2009, pp. 207–222.

[30] B. Steffen, F. Howar, M. Merten, “Introduction to active automata
learning from a practical perspective,” In International School on Formal

372

Methods for the Design of Computer, Communication and Software
Systems. Springer, (2011) pp. 256-296.

[31] N. Walkinshaw, B. Lambeau, C. Damas, K. Bogdanov, P. Dupont,
“STAMINA: a competition to encourage the development and assessment
of software model inference techniques,” Empirical software engineering,
18(4), 2013, pp.791-824.

[32] F. Zhang and T. Cheung, “Optimal transfer trees and distinguishing trees
for testing observable nondeterministic finite-state machines,” IEEE
Transactions on Software Engineering, 29(1), 2003, pp. 1-14.

[33] D. Neider, R. Smetsers, F. Vaandrager, and H. Kuppens, “Benchmarks
for automata learning and conformance testing”, In T. Margaria, K.G.
Larsen and S. Graf, editors. Festschrift Dedicated to Bernhard Steffen on
the Occasion of His 60th Birthday. LNCS 11200, 2019. To appear.

373

