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Abstract—Faults in safety critical real-time systems are not
only logical, but they can correspond to violations of timing
constraints. They must be detected to avoid system failures
with adverse consequences. Developing efficient fault detection
techniques for varieties of system models is still challenging. In
this paper, we deal with fault detection for timed finite state
machines with timeouts (TFSMs-T). TFSM-T is an extension
of FSM to model timing constraints in safety-critical real-time
systems. We lift a fault detection approach developed for FSM to
generate tests detecting both logical faults and violations of time
constraints in TFSMs-T. The approach is based on constraint
solving and uses mutation machines to represent domains of
faulty implementations (mutants) of a specification TFSMs-T.
It also avoids enumerating the implementations one by one. We
develop a prototype tool and we conduct experiments to evaluate
the scalability of the proposed methods.

Index Terms—Fault detection; Mutation testing; Test genera-
tion; Timed finite state machines; Timeouts; SAT-solving;

I. INTRODUCTION

The fault domain coverage criterion can be adopted to gen-

erate tests revealing faults in safety/security critical systems

under test (SUT). The domain can be built from referenced

databases or expert knowledge. Efficient test generation meth-

ods are needed especially for the fault domains of important

sizes, which has motivated the development of an approach [1],

[2] leveraging recent advances in the field of (Boolean) con-

straint solving. The approach has been elaborated to detect

logical faults in reactive systems specified with finite state

machines (FSMs). We propose to lift the approach to detect

both logical faults and violations of time constraints in reactive

systems; in particular, we focus on reactive systems specified

with timed FSMs with timeouts (TFSMs-T).

TFSM-T [3], [4] is an extension of the classical FSM with

timeout transitions for expressing time constraints. Although

they express limited types of time constraints as compared

to other timed FSMs [4], TFSMs-T have been used to

specify reactive systems such as web applications [5] and

protocols [6]–[8]. Logical faults in TFSMs-T correspond to

unexpected outputs or unexpected state changes. Reducing

and increasing waiting time are violations of time constraints.

An implementation for a given specification TFSM-T can be

represented with a mutated version of the specification TFSM-

T also called a mutant. A mutant can be obtained by seeding

the specification with an arbitrary number of faults. A fault

domain for a specification is then a finite set of possible

mutants; it can be built from a list of identified faults to be

detected in systems under test. A mutant is nonconforming if

its timed output sequence differs from that of the specification

for some timed input sequences (tests). Tests covering a fault

domain detect all nonconforming mutants in it.

Approaches have been investigated for FSM-based test gen-

eration with guaranteed fault coverage [9], [10]. FSMs have

been extended to express time constraints, which has resulted

in a variety of timed FSMs [4], [5], [11]–[13]. Timed FSMs

are not compared to the well-known timed automata for which

testing approaches exist [14]–[16]. The testing approaches [5],

[12], [13], [17] for timed FSMs integrate the reasoning on time

constraints in well-known FSM-based testing approaches [10].

The methods in [1], [2] to verify and generate tests for

(extended) FSM specifications are based solving constraints

or Boolean expressions, which allows one to take advantage

of the efficiency of constraint/SAT solvers; this is a novelty as

compared to the work in [18] and the well-known approaches

such as the W-method [19]. The high efficiency of using

constraint solving in testing software code was demonstrated

in [20]. The constraints specifying the mutants surviving

given tests; they are defined over the transitions in executions

of the mutants. The executions are selected with a so-called

distinguishing automaton of the specification and the fault

domain that is compactly modeled with a nondeterministic

FSM called a mutation machine. A solution of the constraints

is a mutant which, if it is nonconforming, allows to generate a

test detecting the mutant and many others; then the constraints

are upgraded to generate new tests.

Our contribution is to lift the methods in [1], [2] for

verifying and generating complete tests to cover fault domains

for TFSM-T specifications. The work in [17] addressed

similar problems by lifting the W-method. Our approach based

on SAT-solving and elimination of FSMs in a fault domain

could take advantage of the efficiency of existing solvers. In

our work, specifications and mutants are deterministic and

input-complete. We define a new distinguishing automaton

with timeouts for a TFSM-T specification and a fault domain.

The automaton serves to extract transitions in detected mutants

and build constraints for specifying test-surviving mutants.

Extracting the transitions, we pair input/output transitions

with timeout-unexpired transitions allowing to perform the
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input/output transitions; this is formalized with a new notion

of ”comb”. We have implemented the methods in a prototype

tool which we use to evaluate the efficiency of the methods

and compare our results with those of the related work.

Organization of the paper: the next section introduces a

fault model for TFSMs-T and the coverage of fault models

with tests. In Section III we build constraints for the analysis

of timed input sequences and the generation of complete test

suites. The analysis and generation methods are presented in

Section IV. Section V presents an empirical evaluation of the

efficiency of the methods with the prototype tool. We conclude

the paper in Section VI.

II. PRELIMINARIES

Let R≥0 and N≥1 denote the sets of non-negative real

numbers and non-null natural numbers, respectively.

A. TFSM with Timeouts

Definition 1. A timed finite state machine with Timeouts
(shortly, TFSM-T) is a 6-tuple S = (S, s0, I, O, λS ,ΔS)
where S, I and O are finite non-empty set of states, inputs and

outputs, respectively, s0 is the initial state, λS ⊆ S×I×O×S
is an input/output transition relation and ΔS ⊆ S × (N≥1 ∪
{∞})×S is a timeout transition relation defining at least one

timeout transition in every state.

TFSMs-T can be described with state transition graphs; the

nodes of the graph correspond to the states and the transitions

are described with labelled and directed arrows between the

states. Figure 1 presents state transition graphs for TFSMs-T.

Our definition of TFSM-T extends the definition in [4] by

allowing multiple timeout transitions in the same state, which

we use later to compactly represent sets of TFSMs-T. An

input/output transition (s, i, o, s′) ∈ λS defines the output o
produced in its source state s when input i is applied. A

timeout transition (s, δ, s′) ∈ ΔS defines the timeout δ in state

s. A timeout transition can be taken if no input is applied at

the current state before the timeout of the transition expires. It

is not possible to expect an input beyond the maximal timeout

defined in the current state.

A TFSM-T uses a single clock for recording the time

elapsing in the states and determining when timeouts expire.

The clock is reset when the transitions are performed. A timed
state of TFSM-T S is a pair (s, x) ∈ S × R≥0 where s ∈ S
is a state of S and x ∈ R≥0 is the current value of the clock

and x < δ for some δ ∈ N≥1∪{∞} such that (s, δ, s′) ∈ ΔS .

An execution step of S in timed state (s, x) corresponds either

to the time elapsing or performing an input/output or timeout

transition; it is permitted by a transition of S . We say that

stp = (s, x)a(s′, x′) ∈ (S ×R≥0)× ((I ×O)∪R≥0)× (S ×
R≥0) is an execution step if it satisfies one of the following

conditions:

• (timeout step) a ∈ R≥0, x′ = 0 and x+a = δ for some δ
such that (s, δ, s′) ∈ ΔS ; then (s, δ, s′) is said to permit

the step.

• (time-elapsing step) a ∈ R≥0, x′ = x + a, s′ = s and

x+ a < δ for some δ and s′′ ∈ S such that there exists

(s, δ, s′′) ∈ ΔS ; then (s, δ, s′′) is said to permit the step.

• (input/output step) a = (i, o) with (i, o) ∈ I ×O, x′ = 0
and there exists (s, i, o, s′) ∈ λS ; then (s, i, o, s′) is said

to permit the step.

Time-elapsing steps satisfy the following time-

continuity property w.r.t the same timeout

transition: if (s1, x1)d1(s2, x2)d2(s3, x3) . . . dk−1

(sk, xk) is a sequence of time-elapsing steps

permitted by the same timeout transition t, then

(s1, x1)d1 + d2 + . . . + dk−1(sk, xk) is a time-elapsing

step permitted by t. In the sequel, any time-elapsing step

permitted by a timeout transition can be represented with

a sequence of time-elapsing steps permitted by the same

timeout transitions.

An execution of S in timed state (s, x) is a sequence of steps

e = stp1stp2 . . . stpn with stpk = (sk−1, xk−1)ak(sk, xk),
k ∈ [1, n] such that the following conditions hold:

• (s0, x0) = (s, x),
• stp1 is not an input/output step,

• stpk is an input/output step implies that stpk−1 is a time-

elapsing step for every k ∈ [1..n].

If needed, the elapsing of zero time units can be in-

serted between a timeout step and an input/output step. Let

d1d2 . . . dl ∈ R
l
≥0 be a non-decreasing sequence of real

numbers, i.e., dk ≤ dk+1 for every k = 1..l − 1. The

sequence σe = ((i1, o1), d1)((i2, o2), d2) . . . ((il, ol), dl) in

((I × O) × R≥0)
∗ with l < n is a timed input/output

sequence of execution e if (i1, o1)(i2, o2) . . . (il, ol) is the

maximal sequence of input/output pairs occurring in e. The

delay dk for each input/output pair (ik, ok), with k = 1..l,
is the amount of the time elapsed from the beginning of e
to the occurrence of (ik, ok). The timed input sequence and

the timed output sequence of e are (i1, d1)(i2, d2)...(il, dl)
and (o1, d1)(o2, d2)...(ol, dl), respectively. We let inp(e) and

out(e) denote the timed input and output sequences of exe-

cution e. Given a timed input sequence α, let outS((s, x), α)
denote the set of all timed output sequences which can be

produced by S when α is applied in s, i.e., outS((s, x), α) =
{out(e) | e is an execution of S in (s, x) and inp(e) = α}.

A TFSM-T S is deterministic (DTFSM-T) if it defines at

most one input-output transition for each tuple (s, i) ∈ S × I
and exactly one timeout transition in each state; otherwise, it is

nondeterministic. S is initially connected if it has an execution

from its initial state to each of its states. S is complete if for

each tuple (s, i) ∈ S × I it defines at least one input-output

transition. Note that the set of timed input sequences defined

in each state of a complete machine S is (I × R≥0)
∗.

We consider distinguishability and equivalence relations

between states of complete TFSMs-T [5]. Let p and s be the

states of two complete TFSMs-T over the same inputs and

outputs. Given a timed input sequence α, p and s are dis-
tinguishable (with distinguishing input sequence α), denoted

p ��α s, if the sets of timed output sequences in outS((p, 0), α)
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s1 s2 s3

s4

a/x [t1]

b/x [t2]
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b/x [t4]
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∞ [t6] a/x [t7]

b/x [t8]

5 [t9]

a/y
[t
1
0 ]

b/x [t11]

∞ [t12]

(a) A specification TFSM S1

s1 s2 s3
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a/x [t1]

b/x [t2]

4 [t
3 ]3 [t

1
6 ]

b/x [t4]

a/x [t5]

∞ [t6] a/x[t7]

a/y [t14]

b/x [t15]

b/x [t8]

5 [t9]

8 [t17]

a/y
[t
1
0 ]

a/y [t13]

b/x [t11]

∞ [t12]

(b) A mutation TFSM M1

s1 s2 s3

s4

a/x [t1]

b/x [t2]

3 [t
1
6 ]

b/x [t4]

a/x [t5]

∞ [t6] a/x [t7]

b/x [t8]

5 [t9]

a
/
y

[t
1
3
]

b/x [t11]

∞ [t12]

(c) A mutant TFSM P1

Fig. 1: Examples of TFSMs, state s1 is initial. Dashed arrows represent mutated transitions and solid arrows represent transitions

of the specification. Names of transitions appear in brackets.

and outS((s, 0), α) differ; otherwise they are equivalent and

we write s � p.

TFSM-T S = (S, s0, I, O, λS ,ΔS) is a submachine of

TFSM-T P = (P, p0, I, O, λP ,ΔP) if S ⊆ P , s0 = p0,

λS ⊆ λP and ΔS ⊆ ΔP .

Example 1. Figure 1 presents two initially connected TFSMs-

T S1 and M1. M1 is nondeterministic; it defines two

timeout transitions in states s1 and s3. S1 is a complete

deterministic submachine of M1. Here are two executions

of M1: (s1, 0)
2−−−→

t3|t16
(s1, 2)

b/x−−→
t2

(s2, 0)
1−→
t6

(s2, 1)
a/x−−→
t5

(s3, 0)
8−−→
t17

(s1, 0)
4−→
t3

(s4, 0)
0.5−−→
t12

(s4, 0.5)
a/y−−→
t10

(s1, 0)

and (s1, 0)
3−−→
t16

(s4, 0)
0.5−−→
t12

(s4, 0.5)
b,x−−→
t11

(s4, 0)
1−−→
t12

(s4, 1)
a,y−−→
t13

(s2, 0)
12.5−−→
t6

(s2, 12.5)
a,x−−→
t5

(s3, 0). Let us explain

the first execution. It consists of 8 steps represented with

arrows between timed states. The label above an arrow is

either a delay or an input-output pair. The label below an

arrow indicates the transitions permitting the step. The first,

third and seventh steps are time-elapsing. The second, fourth

and last steps are input-output. The fifth and the sixth steps

are timeout. The first step is permitted by either t3 or t16
because their timeouts are not expired 2 units after the machine

has entered state (s1, 0). The timeout of t12 permitting the

seventh step has not expired before t10 is performed at the last

step. The timed input/output sequence for the first execution

is ((b, x), 2)((a, x), 3)((a, y), 15.5).

B. Complete Test Suite for Fault Models

Henceforth the TFSMs-T are complete and initially con-

nected. Let S = (S, s0, I, O, λS ,ΔS) be a DTFSM-T, called

the specification machine.

Definition 2. A nondeterministic TFSM-T M =
(M,m0, I, O, λM,ΔM) is a mutation machine for S if

S is a submachine of M. Transitions in λM but not in λS or

in ΔM but not in ΔS are called mutated.

We use mutation machines to compactly represent possible

implementations of the specification machines. A mutant is

a deterministic submachine of M different from the speci-

fication. We let Mut(M) denote the set of mutants in M.

Every mutant represents an implementation seeded with faults.

Faults are represented with mutated transitions which can be

viewed as can be alternatives for transitions of the specification

machines. Mutated transitions can represent transfer faults,

output faults, changes of timeouts and adding of extra-states.

Every mutant defines a subset of mutated transitions.

A transition t is suspicious in M if M defines another

transition t′ from the source state of t such that both transitions

either have the same input or are timeout transitions. In other

words, we can substitute t for t′ in a mutant or the specification

to obtain another mutant. A transition of the specification is

called untrusted if it is suspicious in the mutation machine;

otherwise, it is trusted. Every trusted transition is defined in

each mutant.

Let P be a mutant with an initial state p0 of the mutation

machine M of S. We use the state equivalence relation � to

define conforming mutants.

Definition 3 (Conforming mutants and detected mutants).
Mutant P is conforming to S, if p0 � s0; otherwise, it

is nonconforming and a timed input sequence α such that

outP((p0, 0), α) �= outS((s0, 0), α) is said to detect P . P
survives α if α does not detect P .

The set Mut(M) of all mutants in mutation machine M
is called a fault domain for S. If M is deterministic and

complete then Mut(M) is empty. A fault model is the tuple

〈S,�,Mut(M)〉 following [1], [2], [21]. Let λM(s, i) denote

the set of input/output transitions defined in state s with input

i and ΔM(s) denote the set of timeout transitions defined in

state s. The number of mutants in Mut(M) is given by the for-

mula |Mut(M)| = Π(s,i)∈S×I |λM(s, i)| ×Πs∈S |ΔM(s)| − 1.

Definition 4. A test for 〈S,�,Mut(M)〉 is a timed input

sequence. A complete test suite for 〈S,�,Mut(M)〉 is a set
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s1

s4

s2

s2

s3 s1 s4

s4

s1

4 [t3]

b/x [t2]

∞ [t6]

a/x [t5]
8 [t17] 4 [t3]

∞ [t12]

a/y [t10]

Fig. 2: A comb for the execution in Example 1.

of tests detecting all nonconforming mutants in Mut(M).

Mutated transitions representing faults can be introduced

with different types of mutation operations. These operations

include changing target states, outputs, or timeouts in transi-

tions. Changing timeouts is irrelevant for classical FSM and

the corresponding faults could be detected with adequate tests.

To generate a complete test suite, a test can be computed for

each nonconforming mutant by enumerating the mutants one-

by-one, which would be inefficient for huge fault domains.

We avoid the one-by-one enumeration of the mutants with

constraints specifying only test-surviving mutants.

III. SPECIFYING TEST-SURVIVING MUTANTS

The mutants surviving a test cannot produce any execution

with an unexpected timed output sequence for the test. We

encode them with Boolean formulas over Boolean transition

variables of which the values indicate the presence or absence

of transitions of the mutation machine in mutants.

A. Revealing Combs and Involved Mutants

The mutants detected by a test α exhibit a revealing execu-

tion which produces an unexpected timed output sequence and

has α as the test. Such an execution is permitted by transitions

forming a comb-subgraph in the state transition diagram of

the mutation machine. Intuitively, a comb for an execution

is nothing else but a path augmented with timeout-unexpired

transitions, i.e., transitions of which the timeouts have not

expired prior to an input-output step. These additional timeout

transitions are also needed to specify detected mutants and

eliminate them from the fault domain. We simply represent

combs with sequences of transitions.

A comb of an execution e = stp1stp2 . . . stpn is the

sequence of transitions t1t2 · · · tn such that ti permits stpi for

every i = 1..n. As exemplified in Figure 2, combs are kinds

of non linear graph-structures. We say that comb t1t2 · · · tn
is enabled by the input sequence of e. Each timeout or

input/output step in e is permitted with a unique transition.

However, each time-elapsing step is permitted by a timeout

transition with an unexpired timeout, i.e., the timeout is not

greater than the clock value in the source timed state of the

time-elapsing step. We will follow timeout transitions which

permit time-elapsing steps with the symbol ”�”. So, several

combs can permit the same execution since several timeout

transitions permit the same time-elapsing step.

Example 2. The first execution in Example 1 corresponds to

two combs; this is because its first step is permitted by either

t3 or t16. The first comb, t3 � t2t6 � t5t17t3t12 � t10

is represented in Figure 2. Transition t3 is not performed,

but it permits a time-elapsing step before t2 is performed;

then it is followed by �. The timeouts of the (performed)

transitions represented with horizontal arrows have expired.

The first comb is deterministic; the second comb t16 �

t2t6 � t5t17t3t12 � t10 is nondeterministic because t16 and

t3 are two suspicious timeout transitions defined in s1.

Combs for executions with unexpected timed output se-

quences reveal nonconforming mutants unless they belong

only to nondeterministic submachines. The combs belonging

only to nondeterministic submachines have two transitions

which are not defined in the same mutant; they are called

nondeterministic. A comb is nondeterministic if it has two

suspicious input-output transitions with the same input or two

timeout transitions defined in an identical state of the mutation

machine; otherwise, it is a deterministic comb. Clearly, combs

in a mutant or the specification are deterministic. A nondeter-

ministic submachine of a mutation machine can contain both

deterministic and nondeterministic combs.

Definition 5. Let π be a comb of an execution e1 from (s0, 0)
and α be a timed input sequence. We say that π is α-revealing
if there exists an execution e2 of S such that α = inp(e1) =
inp(e2), out(e1) �= out(e2). Comb π is revealing if it is β-

revealing for some timed input sequence β.

The specification contains no revealing comb because its

executions always produce expected timed output sequences.

Only mutants, nondeterministic or incomplete submachines of

a mutation machine can contain revealing combs; but mutants

contain only deterministic revealing combs.

Let Revα(P) denote the set of deterministic α-revealing

combs of machine P .

Lemma 1. Revα(M) =
⋃

P∈Mut(M)

Revα(P), for any test α.

Lemma 2. Let π ∈ Revα(M) for a test α and P ∈ Mut(M).
P is not detected by α if and only if π �∈ Revα(P).

The comb for the second execution in Example 1, namely

t16t12 � t11t12 � t13t6 � t4 is revealing and contained in

the mutant and mutation machine in Figure 1. To prevent the

fourth execution, we must prevent one of the transitions in

the comb. For example, if we prevent t16, the other timeout

transition t3 defined in s1 will be performed, yielding to

another execution which cannot be performed in the mu-

tant P1, but rather in S1. Clearly S1 is not detected by

(b, 3.5)(a, 4.5)(a, 17), in the contrary of P1.

We introduce a distinguishing automaton which will serve

to compute deterministic combs.

Definition 6. Given a specification machine S =
(S, s0, I, O, λS ,ΔS) and a mutation machine M =
(M,m0, I, O, λM,ΔM), a finite automaton D = (C ∪
{∇}, c0, I, λD,ΔD,∇), where C ⊆ S×M × (N≥0∪{∞})×
(N≥0∪{∞}), λD ⊆ C×I×C is the input transition relation,

ΔD ⊆ C× (N≥1∪{∞})×C is the timeout transition relation
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s1, s1, 0, 0 s2, s2, 0, 0 s3, s3, 0, 0 s2, s3, 0, 5 s2, s4, 0, 0

s2, s1,∞, 0

s2, s3, 0, 0

∇

s4, s4, 0, 0 s1, s4, 3, 0 s2, s2,∞, 0

b [t2] (R1)

3 [t
16 ]

(R
4 )

4
[t

3
]
(R

3
)

b [t4] (R1)

∞ [t6] (R3)

a [t5] (R1)

5 [t17] (R6)

5 [t9] (R3)

b [t8] (R1)

b
[t

1
5
]
(R

1
)

3 [t17] (R5)

a [t10] (R2)

a [t13] (R2)

∞ [t12] (R3)

a [t6] (R1)

a [t14] (R2)

8 [t17] (R5)

5 [t9] (R5)

Fig. 3: A fragment of the distinguishing automaton of S1 and M1 with timeouts; (s1, s1, 0, 0) is initial.

and ∇ is the accepting (sink) state, is the distinguishing
automaton with timeouts for S and M, if it holds that:

• c0 = (s0,m0, 0, 0)

• For each (s,m, xs, xm) ∈ C and i ∈ I

(R1) : ((s,m, xs, xm), i, (s′,m′, 0, 0)) ∈ λD if there ex-

ists (s, i, o, s′) ∈ λS , (m, i, o′,m′) ∈ λM s.t. o = o′

(R2) : ((s,m, xs, xm), i,∇) ∈ λD if there exists

(s, i, o, s′) ∈ λS , (m, i, o′,m′) ∈ λM s.t. o �= o′

• For each (s,m, xs, xm) ∈ C and the only timeout

transition (s, δs, s
′) ∈ ΔS defined in the state of the

deterministic specification

(R3) : ((s,m, xs, xm), δm − xm, (s′,m′, 0, 0)) ∈ ΔD if

there exists (m, δm,m′) ∈ ΔM s.t. δs − xs = δm −
xm and δm − xm > 0

(R4) : ((s,m, xs, xm), δm − xm, (s,m′, xs + δm −
xm, 0)) ∈ ΔD if there exists (m, δm,m′) ∈ ΔM s.t.

δm − xm < δs − xs and δs �=∞ and δm − xm > 0

(R5) : ((s,m, xs, xm), δm − xm, (s,m′,∞, 0)) ∈ ΔD if

there exists (m, δm,m′) ∈ ΔM s.t. δm−xm < δs−
xs and δs =∞ and δm − xm > 0

(R6) : ((s,m, xs, xm), δs−xs, (s
′,m, 0, xm+δs−xs)) ∈

ΔD if there exists (m, δm,m′) ∈ ΔM s.t. δs−xs <
δm − xm and δm �=∞ and δs − xs > 0

(R7) : ((s,m, xs, xm), δs − xs, (s
′,m, 0,∞)) ∈ ΔD if

there exists (m, δm,m′) ∈ ΔM s.t. δs − xs <
δm − xm and δm =∞ and δs − xs > 0,

where ∞ − x = ∞ if x is finite or infinite and

∞+∞ =∞
• (∇, x,∇) ∈ λD for all x ∈ I and (∇,∞,∇) ∈ ΔD

The seven rules {Ri}i=1..7 introduce input transitions and

timeout transitions in D. Each state (s,m, xs, xm) of D is

composed of a state s of S, a state m of M, the value xs

of the clock of S and the value xm of the clock of S. Input

transitions are introduced with R1 and R2. Rule R2 adds a

transition to accepting state∇ if different outputs are produced

in s and m for the same input; otherwise S and M move to

next states, as described with rule R1.

The rules {Ri}i=3..7 introduce timeout transitions of the form

((s,m, xs, xm), δ, (s′,m′, x′s, x
′
m)). δ is the delay for reaching

the only timeout δs defined in s from (s, xs) or a timeout

defined in m from (m,xm), since multiple timeouts can be

defined in states of M. δ can be greater than the delays for

reaching some timeouts defined in m; however, δ is never

greater than δs − xs, the delay for reaching the only timeout

δs in s. So, x′s = 0 if δ = δs − xs; a similar statement holds

for the clock and a selected timeout transition of M. In R3,

both the timeout in s and a timeout in m expire after δ time

units. In R4 only a timeout defined in m expires after δ time

units and the only finite timeout defined in s does not expire

after δ time units. A similar phenomenon is described with

R5; but contrarily to R4, the only timeout in s is ∞ and we

set the clock of the specification to ∞. Setting the clock to ∞
expresses the fact that we do not care any more about finite

values of x′s because only the infinite timeout in s must be

reached. Without this latter abstraction on the values of x′s, the

size of C could be infinite because we could have to apply

R4 infinitely. The rules R6 and R7 are similar to R4 and R5,

but the only timeout in s expires before a timeout in m.

An execution of D from a timed state (c, x) is a sequence of

steps between timed states of D; it can be defined similarly to

that for a TFSM-T. An execution starting from (c0, 0) and

ending at ∇ is called accepted. As for TFSMs-T, we can

associate every execution of D with a comb and a timed

input sequence. A comb of D is accepted if it corresponds

to an accepted execution. Each transition in D is defined by

a transition of S and a transition of M. So, every comb of D
is defined by a comb of S and a comb of M, i.e., it has been

obtained by composing the transitions in two combs.

Lemma 3. A comb π of M is revealing if it defines an

accepted comb of D.

A revealing comb can be common to many mutants, in

which case those mutants are said to be involved in the comb.

Mutants involved in a revealing comb are detected by the tests

enabling the comb. We let SuspX denote the set of suspicious

transitions in X .

Lemma 4. A mutant P is involved in a revealing comb π of

M if and only if Suspπ ⊆ SuspP .

Lemma 4 assumes that mutants are known and indicates

how to check if a mutant is involved in a given (deterministic

or nondeterministic) revealing comb. However, we want to

avoid the enumeration of the mutants in eliminating the

nonconforming mutants detected by a test; we also want

to generate tests corresponding to deterministic revealing

combs because they detect nonconforming mutants as stated in
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Lemma 2. So we will focus on computing only deterministic

α-revealing combs in Revα(M) from D. This is done by a

Breadth-first search of sink state ∇ in D while performing

transitions of D defined with transitions of M which cannot

be defined in an identical mutant. The search is step-wise and

guided by timed inputs in α; it consists to perform a timeout

transition in D whenever the delay between the current and the

previous input in α is greater than the timeout of the transition

or to perform an input transition in D when the current state

in D defines a timeout smaller than delay between the current

and the previous input.

Example 3. Figure 3 presents a fragment of the distinguishing

automaton for the S1 and M1 in Figure 1. It is relevant for the

revealing combs for α = (b, 0.5)(a, 1)(b, 6.7)(a, 7.2). [t](R)
indicates an input/output transition or a timeout transition

t of the mutation machine defining the transition of the

automaton introduced with rule R; e.g., the timeout transition

((s3, s3, 0, 0), 5, (s2, s3, 0, 5)) is defined by t17 and the time-

out of t17 has not expired when R6 is applied. One of the

six deterministic α-revealing combs is: t3 � t2t6 � t5t17 �

t8t12 � t10; the transitions in bold are suspicious.

B. Encoding Submachines Involved in Revealing Combs
We introduce a Boolean variable for each suspicious tran-

sition in mutation machine M; Based on Lemma 4, we build

Boolean formulas over these variables to encode the mutants

involved in revealing combs. A solution of such a formula

assigns a truth value to every transition variable. We say

that a solution of a formula determine a submachine P of

M if P is composed of all trusted transitions and every

suspicious transition for which the value of the corresponding

variable is True. In general, the submachine for the solution

of a formula can be non-initially connected, nondeterministic

or incomplete. Later we encode mutants (deterministic and

complete submachines) with additional formulas. For now, let

us encode the submachines involved in revealing combs of M
with Boolean formulas.

Let α be a test and Revα(M) = {π1, π2, . . . , πn} be

the set of deterministic revealing combs of M enabled by

α. We encode a comb π = t1t2 . . . tm of M with the

Boolean formula ϕπ =
∧

ti∈Suspπ
ti, the conjunction of all

the suspicious transitions in π. Clearly, any solution of ϕπ

determines a submachine (of the mutation machine) containing

the comb π; The executions associated with π are defined in

such a submachine which is detected by α. Conversely, each

submachine determined by a solution of the negation of ϕπ

does not contain π; it cannot define any execution associated

with π and is not detected by α. Such a submachine is not

necessarily a mutant because it can be nondeterministic or

incomplete. For the set of deterministic revealing combs in

Revα(M), let us define the formula ϕα =
∨

π∈Revα(M) ϕπ .

The set of (possibly nondeterministic or incomplete) subma-

chines of M detected by α is determined by a solution of ϕα.

A submachine of M surviving α cannot contain any comb in

Revα(M) and it cannot be determined by a solution of the

negation of ϕα, as stated in Lemma 5.

Lemma 5. A submachine of M survives a test α if and only

if it can be determined by a solution of ¬ϕα.

To obtain the mutants surviving α, we remove from the so-

lutions of ¬ϕα those determining nondeterministic or incom-

plete submachines. This is possible with a Boolean formula

encoding only the mutants in M.

C. Encoding the Mutants in a Mutation Machine
Let T = t1, t2, . . . tn be a set of Boolean variables for all

the transitions ti of M, i = 1..n. Let us define the Boolean

formula ξT as follows:

ξT =
∧

k=1...n

∧

l=k+1..n

(¬tk ∨ ¬tl) ∧
∨

k=1..n

ti

A solution of ξT assigns True to exactly one selected variable

and assigns False to all other variables. Note that ξT is a

CNF-SAT formula and it can be solved [22].
Let M be a mutation machine for the specification machine

S. Clearly, λS ⊆ λM and ΔS ⊆ ΔM. A deterministic and

complete submachine of M selects one transition in λM(s, i)
and one transition in ΔM(s) for every state s and input i; it is

therefore determined by a solution of ϕM defined as follows:

ϕM =
∧

(m,i)∈M×I

ξλM(m,i) ∧
∧

m∈M
ξΔM(m) ∧

∨

t∈λS∪ΔS

¬t

The specification cannot be determined by a solution of ϕM
because its subformula

∨
t∈λS∪ΔS ¬t encodes the rejection of

transitions of the specification, since λS ∪ΔS ⊆ λM ∪ΔM.

The graph composed of the transitions selected by a solution

can be disconnected, in which case it does not represent any

mutant; a mutant can be obtained by extracting the transitions

connected to the initial state.

Lemma 6. A submachine of M is complete and deterministic

if and only if it is determined by a solution of ϕM.

Theorem 1. A mutant survives the test α if it is determined

by a solution of ¬ϕα ∧ ϕM.

Considering the revealing combs for α = (b, 0)(a, 0)
(b, 5)(a, 5), we use the suspicious transitions in the six reveal-

ing combs in Example 3 to compute ¬ϕα = (¬t3∨¬t17∨¬t8∨
¬t10)∧(¬t3∨¬t17∨¬t8∨¬t13)∧(¬t3∨¬t17∨¬t15∨¬t14)∧
(¬t16∨¬t17∨¬t8∨¬t10)∧(¬t16∨¬t17∨¬t8∨¬t13)∧(¬t16∨
¬t17∨¬t15∨¬t14). The mutant composed with the transitions

t1, t2, t4, t6, t5, t7, t9, t15, t13, t12, t11 and t16 is determined by

a solution of ¬ϕα and it survives α. The submachine with

the transitions t1, t2, t3, t4 and t6 is determined by another

solution of ¬ϕα; it is neither a mutant nor a solution of ϕM1
.

The mutants surviving a test α can be partitioned into

conforming mutants and nonconforming mutants which can

only be detected with a test different from α. Nonconforming

mutants can be used to generate additional tests and upgrade

the constraints. The generated test suite is complete if the so-

lutions of the constraints determine only conforming mutants.

This is the intuition of the test verification and generation

methods below. The methods avoid a one-by-one enumeration

of the mutants because a single test eliminates many of them.
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Procedure Verify completeness (ϕfd , E,D);
Input : ϕfd , a Boolean expression specifying a fault

domain

Input : E, a (possibly empty) set of tests

Input : D, the distinguishing automaton of M and S
Output : α �= ε, a test detecting a nonconforming

mutant surviving E; α = ε, if E is complete

initialization : ϕE :=
∧

α∈E ¬ϕα ϕfd := ϕfd ∧ ϕE

ϕP := False α := ε;

repeat
ϕfd := ϕfd ∧ ¬ϕP ;

P := Determine a submachine(ϕfd );

if P �= null then
Build DP , the distinguishing automaton of S and

P;

if DP has no sink state then
ϕP :=

∧
t∈λP∪ΔP t;

else
Set α to the timed input sequence of an

accepted comb of the distinguishing

automaton DP ;

end
end

until α �= ε or P = null;
return (ϕfd , α);
Algorithm 1: Verifying the completeness of given tests.

IV. VERIFYING AND GENERATING A COMPLETE TEST

SUITE

Let E = {α1, α2, . . . , αn} be a test suite and 〈S,�
,Mut(M)〉 be a fault model. Our method for verifying whether

E is complete works in three steps. First we build the Boolean

expression
∧

α∈E ¬ϕα ∧ ϕM encoding the mutants surviving

E; this is based on Theorem 1. Secondly, we use a solver

to determine a mutant surviving the Boolean expression.

Thirdly, we decide that E is a complete test suite if there

is no mutant surviving E or all the mutants surviving the

tests in E are conforming. Procedure Verify completeness
in Algorithm 1 implements the method. It makes a call to

Determine a submachine for obtaining a mutant in a fault

domain specified with ϕfd . Determine a submachine can

use an efficient SAT-solver to solve ϕfd and build mutants

from solutions. Determine a submachine returns null when

ϕfd is unsatisfiable, i.e., the fault domain is empty. Ver-
ify completeness always terminates; this is because the size

of the fault domain and the number of revealing combs for a

test are finite, and the SAT problem is decidable.

Procedure Generate complete test suite in Algorithm 2 im-

plements the iterative generation of a complete test suite. In

each iteration step, a new test is generated to detect a sur-

viving mutant returned by Verify completeness if the mutant

is nonconforming; otherwise the mutant is discarded from the

set of surviving mutants. Generate complete test suite always

terminates because there are finitely many mutants in the

fault domain, Verify completeness always terminates and the

Procedure Generate complete test suite

(Einit , 〈S,�,Mut(M)〉);
Input : Einit, an initial (possibly empty) set of timed

input sequences

Input : 〈S,�,Mut(M)〉, a fault model

Output : E, a complete test suite for 〈S,�,Mut(M)〉
Compute ϕM, the boolean formula encoding all the

mutants in Mut(M);
Build D, the distinguishing automaton of S and M;

ϕfd := ϕM;

E := ∅;
Ecurr := Einit;

repeat
E := E ∪ Ecurr ;

(ϕfd , α) := Verify completeness(ϕfd , Ecurr ,D);
Ecurr := {α};

until α = ε;
return E;

Algorithm 2: Generating a complete test suite E from Einit .

number of surviving mutants is reduced at every iteration step.

The result of an execution of Verify completeness with

input Einit = {(b, 0.5)(a, 1)(b, 6.7)(a, 7.2)} is the nonempty

test (a, 3), which indicates that Einit is not complete.

We can generate additional tests to be added to E and

obtain a complete test suite. An execution of Gener-
ate complete test suite with Einit produces five tests detect-

ing all the 31 mutants in the fault domain. The tests are

the following: (b, 0.5)(a, 1)(b, 6.7)(a, 7.2), (a, 3), (a, 4)(a, 8),
(b, 0)(a, 0)(b, 0)(a, 0) and (b, 0)(a, 0)(a, 0). The generated test

suite includes identical untimed sequences applied after differ-

ent delays, i.e., the delays are needed for the fault detection.

V. EXPERIMENTAL RESULTS

We implemented in the C++ language a prototype tool

for an empirical evaluation of the efficiency of the proposed

methods. The experiment was accomplished with a computer

equipped with the processor Intel(R) Core(TM) i5-7500 CPU

@ 3.40 GHz and 32 GB RAM. The tool uses the solver

cryptoSAT [22]. We use the tool to evaluate the scalability

of the proposed methods with examples of TFSMs-T.

We consider a TFSM-T specification of the Trivial File

Transfer Protocol (TFTP) [7]. TFTP is timeouts-dependent and

it has already been tested in [6]. Our model focuses on the

behavior of reading files; it is inspired by [6], [7]. No more

than a given number of packets are transferred and the timeout

for expecting a packet equals three seconds. Moreover, we

assume the file exists. The number of packets determines the

number of states in the specification machine.

For two packets, the specification has 3 states and 23
transitions. We manually built a mutation machine consisting

of 3 states and 198 mutated transitions; it specifies 1404928
mutants. The tool generated within 0.31s a complete test suite

332



#mutants in the fault domain

#states � 104 � 108 � 1012 � 1018

4 states (9, 0.04) (26, 9.17) (30, 319.19) N/A
8 states (9, 0.5) (19, 0.65) (32, 5.31) (68, 864.06)
10 states (9, 4.73) (20, 21.44) (30, 682.97) (58, 250.72)
12 states (8, 56.36) (20, 1.32) (25, 66.1) (47, 593.07)
15 states (5, 168.24) (17, 227.56) (33, 418.72) (58, 64.55)

TABLE I: Size of the generated complete test suites and

generating time ; for an entry (x, y), x is the size of the test

suite and y is the generating time in seconds.

of size 23. The maximal length of the tests is 5. The size

of the generated complete test suite could be reduced to 16
by removing the seven tests which are prefixes of the others.

For 15 packets, the specification has 16 states and we built

a mutation machine with 9438 mutated transitions specifying

1.9×1046 mutants; then we generated a complete test suite of

size 98 within 555.14s. The test suite can be amputated from

23 tests’ prefixes. The maximal length of the tests is 17.

Table I presents the evaluation results for randomly gen-

erated specification and mutation machines equipped with 2
inputs and 2 outputs. The maximal timeout in the specification

machines is 3 and the one in the mutation machines is 5.

We have generated complete test suites for fault domains

of important sizes and TFSM-T of reasonable size. In the

automotive domain, controllers can be represented with fewer

than 13 states, which let us believe that the proposed testing

approach is suitable for industrial-sized TFSMs-T.

VI. CONCLUSION

We have proposed an approach to detecting logical and

timing faults in systems represented with TFSMs-T. We have

identified the types of faults to be detected and we have

defined mutation machines to represent a fault domain for

a specification TFSMs-T. The proposed approach includes a

method of checking whether a test suite is complete for a

fault domain and a method of generating a complete test

suite. The methods are inspired from constraint solving-based

test generation methods developed for FSM. We defined the

distinguishing automaton with timeouts which is used to build

SAT constraints, verify the completeness of test suites and

generate complete test suites. We evaluated the scalability the

methods with a prototype tool we developed.

Further work includes enhancing the developed prototype

tool, reducing the size of the generated test suites, comparing

the efficiency of the approach w.r.t. the approach in [4], [17]

and lifting the proposed methods to TFSMs expressing time

constraints beyond the timeouts.
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