
Learning Minimal DFA: Taking Inspiration from
RPNI to Improve SAT Approach

Florent Avellaneda and Alexandre Petrenko

Computer Research Institute of Montreal
{florent.avellaneda, alexandre.petrenko}@crim.ca

Abstract. Inferring a minimal Deterministic Finite Automaton (DFA)
from a learning sample that includes positive and negative examples
is one of the fundamental problems in computer science. Although the
problem is known to be NP-complete, it can be solved efficiently with
a SAT solver especially when it is used incrementally. We propose an
incremental SAT solving approach for DFA inference in which general
heuristics of a solver for assigning free variables is replaced by that em-
ployed by the RPNI method for DFA inference. This heuristics reflects
the knowledge of the problem that facilitates the choice of free variables.
Since the performance of solvers significantly depends on the choices
made in assigning free variables, the RPNI heuristics brings significant
improvements, as our experiments with a modified solver indicate; they
also demonstrate that the proposed approach is more effective than the
previous SAT approaches and the RPNI method.

Keywords: Machine Inference · Machine Identification · Learning Au-
tomata · DFA · Grammatical Inference · SAT Solver.

1 Introduction

When we have an unknown system, re-engineering its model brings many ad-
vantages. A formal representation of the system allows us to understand how it
works. The model can be used to check the properties of the system. Tests could
be generated from the model using existing methods for model-based testing.

In this paper we are interested in the inference of a DFA model from observa-
tions. As is customary, we follow the principle of parsimony. This principle states
that among competing hypotheses, the one with the fewest assumptions should
be selected. Addressing the model inference problem, this principle suggests to
infer the simplest model consistent with observations. Since the model to infer is
an automaton, we generally use the number of states to measure the complexity.

There are two types of approaches for DFA inference, heuristic and exact
approaches. Heuristic approaches merge states in an automaton representation
of observations until a local minimum is reached. Exact approaches try to find a
minimal automaton consistent with observations. The most known heuristic ap-
proach is probably the RPNI (Regular Positive and Negative Inference) method
[12]. It performs a breadth first search by trying to merge a newly encountered

2 F. Avellaneda and A. Petrenko

state with states already explored. Effective exact approaches generally formu-
late constraints and solve them using SAT solvers. Heule and Verwer have pro-
posed an efficient SAT modeling [9]. We proposed an incremental SAT solving
approach in the case of FSM inference [3]. The heuristic and exact approaches
are generally quite distinct. In this paper we try to combine them together in
order to achieve a better performance. The idea is as follows. We know that the
efficiency of SAT solvers depends strongly on the order in which the Boolean
variables are considered. To choose a “good” order among the Boolean variables
SAT solvers use all kinds of generic heuristics which do not exploit the specifics
of a particular problem, in our case it is DFA inference. In this paper, we use
the RPNI heuristics to define the variable assignment order. Thus, the result-
ing approach can be viewed as an exact approach, though it uses RPNI to help
finding a minimal automaton consistent with observations more quickly.

The paper is organized as follows. Section 2 contains definitions. Section 3
defines the inference problem and provides an overview of passive inference. Sec-
tion 4 contains our contributions, namely, an incremental SAT solving approach
for DFA, and modifications of a SAT solver incorporating the RPNI heuristics
for determining the assignment order. Section 5 contains benchmarks. Finally
Section 6 concludes.

2 Definitions

A Deterministic Finite Automaton (DFA) is a sextupletA = (Q,Σ, δ, qε, FA, FR),
where Q is a finite set of states, Σ is an alphabet, δ : Q × Σ → Q is a transi-
tion function, qε ∈ Q is the initial state, and FA ⊆ Q and FR ⊆ Q are disjoint
sets of marked states, called the accepting and rejecting states, respectively [6].
We recursively extend the function δ to Q × Σ∗ → Q such that δ(q, ε) = q
and δ(q, a.w) = δ(δ(q, a), w). Also, for simplicity, we will write (q, a, q′) ∈ δ if
δ(q, a) = q′.

A learning sample is a pair of finite disjoint sets of positive examples S+ and
negative examples S−. We say that a DFA A is consistent with S = (S+, S−)
if ∀w ∈ S+ : δ(qε, w) ∈ FA and ∀w ∈ S− : δ(qε, w) ∈ FR. If all DFAs with fewer
states than A are not consistent with S, then we say that A is a minimal DFA
consistent with S. We say that an example w is inconsistent with A if w is a
positive example and δ(qε, w) /∈ FA or w is a negative example and δ(qε, w) /∈ FR.
We use Pref(S) to denote the set of all prefixes of S+ and S−.

A Prefix Tree Acceptor (PTA) for a learning sample S, denoted P(S) is the
tree-like DFA consistent with S such that all prefixes in Pref(S) are the states
of P(S) and only they. We denote by qw the state reached by P(S) with the
word w.

We say that two states q, q′ ∈ Q are incompatible, denoted q � q′, if q ∈
FA ∧ q′ ∈ FR or q ∈ FR ∧ q′ ∈ FA or ∃a ∈ Σ : δ(q, a) � δ(q′, a). Two states are
compatible if they are not incompatible.

Learning Minimal DFA 3

3 Inference Problem

Given a learning sample S = (S+, S−) generated by an unknown DFA, we want
to find a minimal DFA A consistent with S.

The existing approaches merge states in two different ways. The so-called
RPNI approach [12] merges states incrementally. It is a heuristic approach, but
we know that if the learning sample is large enough then it will find a minimal
DFA consistent with S.

Another approach is based on a SAT solver and tries to determine a partition
on the set of states of PTA P(S) = (Q,Σ, δ, qε, FA, FR) into compatible states
such that the number of blocks does not exceed n. Clearly, n should be smaller
than |Q|. If no partition can be found, it means that the bound n is too low. In
this case we increase n and start again.

This approach has the advantage to guarantee that a minimal DFA consistent
with S can be found independently of the size of the learning sample.

3.1 RPNI method

The algorithm RPNI is a popular method for inferring a DFA from a learning
sample. A detailed explanation of the RPNI algorithm can be found in [6]. The
idea consists in trying to merge states iteratively in a particular order. The
algorithm attempts to merge first the states closest to the root state.

In particular, RPNI starts with the PTA determined from S. Then a breadth-
first search is performed respecting the lexicographical order. Each time when a
new state is found, the algorithm tries to merge it with already explored states
(from the earliest to the most recently considered). The algorithm terminates
when all states are considered and no more merge can be performed.

A remarkable property of this algorithm is that it identifies in the limit the
generator of S. This means that with enough positive and negative examples,
the DFA inferred by this algorithm will be the generator.

3.2 SAT Solving approach

The inference problem can be cast as a constraint satisfaction problem (CSP)
[4]. For each state q ∈ Q of the PTA we introduce an integer variable xq such
that

∀qi, qj ∈ Q : if qi ∈ FA ∧ qj ∈ FR then xqi 6= xqj

if ∃a ∈ Σ : (qi, a, q
′
i), (qj , a, q

′
j) ∈ δ then

(xqi = xqj)⇒ (xq′i = xq′j)

(1)

Let B = {0, ..., n− 1} be a set of integers representing blocks of a partition. The
blocks are ordered following the order of natural numbers. Assuming that the
value of xq is in B for all q ∈ Q, we need to find a solution, i.e., an assignment
of values of all variables such that (1) is satisfied. Each assignment implies a
partition of n blocks and thus a DFA with at most n states consistent with S.

4 F. Avellaneda and A. Petrenko

These CSP formulas can be translated to SAT using unary coding for each
integer variable xq where q ∈ Q: xq is represented by n Boolean variables
vq,0, vq,1, ..., vq,n−1. Moreover, Heule and Verwer [9] propose to use auxiliary
variables and redundant clauses in order to speed up the solving process. The
SAT formulation they propose is as follows.

They define three kinds of variables:

– vq,i, q ∈ Q and i ∈ B. If vq,i is true, it means that state q is in block i.
– ya,i,j , i, j ∈ B and a ∈ Σ. If ya,i,j is true, it means that for any state in

block i, the successor reached by symbol a is in block j.
– zi, i ∈ B. If zi is true, this means that block i becomes an accepting state.

For each state q ∈ Q, we have the clause:

vq,0 ∨ vq,1 ∨ ... ∨ vq,n−1 (2)

These clauses mean that each state should be in at least one block.

For each state q and every i, j ∈ B such that i 6= j, we have the clauses:

¬vq,i ∨ ¬vq,j (3)

These clauses mean that each state should be in at most one block.

The clauses 2 and 3 encode the constraint that each state should be in exactly
one block.
For every states q ∈ FA, q′ ∈ FR and each i ∈ B, we have the clauses:

(¬vq,i ∨ zi) ∧ (¬vq′,i ∨ ¬zi) (4)

These clauses mean that an accepting state cannot be in the same block as a
rejecting state.

For each transition (q, a, q′) ∈ δ and for every i, j ∈ B:

ya,i,j ∨ ¬vq,i ∨ ¬vq′,j (5)

This means that if state q is in the block i and its successor q′ on symbol a is in
the block j then blocks i and j are related for symbol a.
For each transition (q, a, q′) ∈ σ and for every i, j ∈ B:

¬ya,i,j ∨ ¬vq,i ∨ vq′,j (6)

This means that if blocks i and j are related for symbol a and a state q is in
block i, then the successor of q with symbol a have to be in block j.
For each symbol a ∈ Σ, for every i, j, h ∈ B such that h < j:

¬ya,i,h ∨ ¬ya,i,j (7)

Learning Minimal DFA 5

This means that each block relation can include at most one pair of blocks for
each symbol to enforce determinism. Because of the commutative property of
the operator ∨, we add the constraint h < j to remove the equivalent clauses.
For each symbol a ∈ Σ and each i ∈ B:

ya,i,0 ∨ ya,i,1 ∨ ... ∨ ya,i,n−1 (8)

This means that each block relation must include at least one pair of blocks for
each symbol.

We represent in Table 1 a summary of the formulas defined by Heule and
Verwer.

Table 1. Summary for encoding (1) with clauses from PTA P(S) = (Q,Σ, δ, qε, FA, FR)
into SAT. n is the maximal number of states in a DFA to infer, B = {0, ..., n− 1}.

Ref Clauses Range

(2) vq,0 ∨ vq,1 ∨ ... ∨ vq,n−1 q ∈ P(S)
(3) ¬vq,i ∨ ¬vq,j q ∈ P(S); 0 ≤ i < j < n
(4) ¬vq,i ∨ ¬vq′,i q ∈ FA, q′ ∈ FR; i ∈ B
(5) ya,i,j ∨ ¬vq,i ∨ ¬vq′,j (q, a, q′) ∈ δ; i, j ∈ B
(6) ¬ya,i,j ∨ ¬vq,i ∨ vq′,j (q, a, q′) ∈ δ; i, j ∈ B
(7) ¬ya,i,h ∨ ¬ya,i,j a ∈ Σ;h, i, j ∈ B;h < j
(8) ya,i,0 ∨ ya,i,1 ∨ ... ∨ ya,i,n−1 a ∈ Σ; i ∈ B

It is possible that different assignments for a given SAT formula represents
the same solution. In this case, we say that we have symmetry. A good practice
is to break this symmetry [1, 2, 5] by adding constraints such that different as-
signments satisfying the formula represent different solutions. A formulation can
result in a significant amount of symmetry if any permutation of the blocks is al-
lowed. To eliminate this symmetry, Heule and Verwer use the state incompatibil-
ity graph which has |Q| nodes and two nodes are connected iff the corresponding
states of Q are incompatible. Clearly, each state of a clique (maximal or smaller)
must be placed in a distinct block. Hence, they add to the SAT formula clauses
for assigning initially each state from the clique to a separate block.

Experiments indicate that the proposed encoding of the constraints (1) is
rather compact.

4 Incremental SAT Solving with Domain Specific
Heuristics

4.1 Incremental SAT Solving

A disadvantage of the above SAT method is that the bigger a learning sample,
the more complex the SAT formula. Thus, it can be expected that the solution
time will increase significantly with the size of the learning sample. However,

6 F. Avellaneda and A. Petrenko

in practice, this becomes detrimental, because we would like to use the largest
possible learning sample to increase the chances of inferring a good model.

Addressing this problem, we proposed an iterative method for inferring FSMs
[3]. Similar to this method, we propose to generate SAT constraints incrementally
for DFAs as well. The idea is to iteratively infer a DFA from constraints generated
for a subset (initially it is an empty set) of the learning sample. If the inferred
DFA is inconsistent with the full learning sample, then we add more constraints
considering an inconsistent example. This idea is in fact used by active inference
methods, though active inference rely on a black box as an oracle capable of
judging whether or not a word belongs to the model. In our method, the role
of an oracle is assigned to a learning sample S. Even if this oracle is restricted
since it cannot decide the acceptance for all possible examples, nevertheless, as
we demonstrate, it leads to an efficient approach for passive inference from a
learning sample.

Our incremental inference method works as follows. Let S be a learning
sample (generated by a deterministic DFA). We want to find a minimal DFA
consistent with S iteratively. To do that, we search for a DFA A with at most
n states satisfying a growing set of constraints (initially we do not have any
constraints). If no solution is found, it means that the bound n is too low. In
this case we increase n and start again. If a solution is found and A is consistent
with S, then we return this solution. Otherwise, we find the shortest example
w in S inconsistent with A. Then, we formulate a constraint that w has to be
consistent with A.

Note that Heule and Verwer’s method of using a clique in the incompatibility
graph is not applicable in an iterative approach context. Thus, we use an implicit
and not explicit symmetry breaking method. In particular, we forbid block per-
mutations by using a total order on the set of states. Let < be a total order over
the set of states Q =

⋃
w∈Pref(S)

Qw for all positive and negative examples. Based

on a chosen order we add the following clauses excluding permutations. For each
q ∈ Q and each i ∈ B, we have a Boolean formula (which can be translated
trivially into clauses):

(
∧
q′<q

¬vq′,i)⇒ ¬vq,i+1 (9)

Intuitively, these clauses force to use blocks not already assigned when a state
requires a new block.

The SAT formulation from Heule and Verwer is an efficient compact encoding,
but determining that two states cannot be merged is a complex task. With our
new heuristics, that we will present in Section 4.2, the solver will attempt to
merge numerous not always compatible states. To reduce the number of such
attempts we add more auxiliary (thus redundant) clauses that allow the solver
to immediately detect that two states cannot be merged.

In particular, we add new auxiliary variables Eq,q′ for each pair of states
q, q′ ∈ Q.

Learning Minimal DFA 7

First, we add clauses to encode the constraint that an accepting and a reject-
ing state cannot be merged. For every states q, q′ such that q ∈ FA and q′ ∈ FR
we have a Boolean formula:

¬Eq,q′ (10)

Notice that the clauses (4) express the same constraint, but in a less explicit
way. In the same vein, we enforce the determinism of solutions by requiring
that if two states merged together, their successors for any symbol also have to
be merged together. We encode this property by the following formula (which
can be translated trivially into clauses). For all (q, a, p), (q′, a, p′) ∈ δ we have a
Boolean formula:

Eq,q′ ⇒ Ep,p′ (11)

Finally, we encode the propagation of incompatibility to prohibit some merg-
ers by the following formula (which can be translated trivially into clauses). For
every states q, q′ ∈ Q and all i ∈ {0, ..., n− 1}

(¬Eq,q′ ∧ vq,i)⇒ ¬vq′,i (12)

It should be noted that we do not only propagate incompatibility here. The
aim is to detect a conflict when a wrong merge is done without having to assign
more free variables. Obviously the detection of such an error is not always pos-
sible without having to assign all free variables, but the above formulas increase
the number of cases where this is possible.

Table 2. Summary for additional clauses from the PTA P(S) = (Q,Σ, δ, qε, FA, FR).

Ref Clauses Range

(9) (
∧
q′<q
¬vq′,i)⇒ ¬vq,i+1 q ∈ Q, i ∈ {0, ..., n− 1}

(10) ¬Eq,q′ q ∈ FA; q′ ∈ FR
(11) ¬Eq,q′ ∨ Ep,p′ (q, a, p), (q′, a, p′) ∈ δ
(12) Eq,q′ ∨ ¬vq,i ∨ ¬vq′,i q, q′ ∈ Q; i ∈ {0, ..., n− 1}

The incremental SAT solving approach is formalized in Algorithm 1. The
algorithm refers to Table 1 and 2 to encode the problem in SAT. Note that in
practice we only add clauses not already added to exploit the ability of the SAT
solver to operate incrementally.

Theorem 1. Algorithm 1 returns a DFA consistent with S if it exists and false
otherwise.

Proof. If the algorithm returns a DFA, it means that the condition in line 7
holds, A is consistent with S. If the algorithm returns false, it means that the
formula C is unsatisfiable, and therefore there is no partition of size n for P(S′);
hence there is no solution for learning sample S.

8 F. Avellaneda and A. Petrenko

Algorithm 1 Infer a DFA from a learning sample

Input: A learning sample S and an integer n
Output: A DFA with at most n states consistent with S if it exists

1: Let S′ be an empty set
2: C := vqε,0
3: C := C ∧

∧
a∈Σ, 0≤i<n

(ya,i,0 ∨ ...ya,i,n−1) (See Formula 8)

4: C := C ∧
∧

a∈Σ, 0≤i,j,h<n, h<j
(¬ya,i,h ∨ ¬ya,i,j) (See Formula 7)

5: while C is satisfiable do
6: Let A be a DFA of a solution of C
7: if A is consistent with S then
8: return A
9: end if

10: Let w be the shortest example in S inconsistent with A
11: S′ := S′ ∪ {w}
12: Let C be the clauses from the PTA P(S′) using Table 1 and Table 2
13: end while
14: return false

The termination of the algorithm is guaranteed by the fact that in each
execution of the loop, a new example of S is considered. Thus, when S′ = S, we
know that the condition in line 7 is true.

4.2 Domain Specific Heuristics

The performance of solvers depends strongly on the choices made when assigning
free variables. A free variable is a variable not yet assigned to a value true or
false. Indeed, the resolution time can be significantly longer or shorter depend-
ing on these choices. In order to mitigate this problem, solvers use all kinds of
heuristics [8, 10, 11]. These heuristics are generally intended to be comprehensive
and try to reduce the resolution time whatever the formulas to solve are.

In this section, we propose to use, instead of the general heuristics, a heuris-
tics specific to the DFA inference to decide which free variable should be assigned
next. As the RPNI algorithm does exactly this and identifies in the limit the
generator, we propose to use its heuristics to make the variable choices. This is
motivated by the observation that RPNI makes state merge choices more and
more relevant as the number of examples increases. Thus, we expect that the
extra time required by a SAT solver to solve a problem when more examples are
added will be compensated by the time saved by our heuristics and by making
better choices of next free variables to assign. We know that eventually this will
be the case, because all the merging choices made by RPNI are correct choices
when the number of examples is large enough.

Learning Minimal DFA 9

4.2.1 RPNI heuristics on decision variables
Most of the SAT solvers allow the user to distinguish two types of variables,

decision and auxiliary variables. The decision variables are the variables for
which we want to know a valid assignment, i.e., the assignment that satisfies the
formula. Auxiliary variables are additional variables that can be used to factorize
the encoding of a SAT formula or just help a solver find a solution faster. We
do not seek generally to find an assignment for these auxiliary variables, since
it can be deduced from a valid assignment of the decision variables. In our SAT
formula, only variables vq,i will be decision variables. The other variables will
be considered by the solver as auxiliary variables. Thus, the SAT solver will
terminate when it finds an assignment for all variables vq,i.

The RPNI heuristics will be used to decide which variable vq,i should be
chosen among the free variables. To do that, each word w.i such that δ(qε, w) = q
is assigned to the variable vq,i. When the solver must decide which free variable
to pick, one of variables vq,i will be chosen according to the lexicographical order
on the words associated with variables. Then it will try to assign this variable
to true.

In fact, this heuristic suggests selecting a state not already assigned to a
block and trying to assign it to a block in the ascending order. The order in
which the states are selected respects the RPNI strategy, i. e., selecting the state
closest in the lexicographical order to the root.

4.2.2 Implementation
Adding the proposed heuristics to a solver, we have slightly modified the

solver MiniSAT [7]. In MiniSAT, the variable order heap of type V arOrderLt
associates a weight of type Integer to each free variable. The heuristics used
by the solver consists in modifying these weights during the resolution of the
formula according to various criteria. Thus, when a free variable assignment
must be done, the solver uses order heap to select the free variable according to
its weight.

Our modification consists in disabling the default solver heuristics and chang-
ing the V arOrderLt structure of each variable to a word. Thus, each Boolean
variable vqw,i is associated with the weight w.i. As a result, when a free variable
has to be assigned the solver returns a variable associated with the shortest word
in the lexicographic order.

5 Experimental Evaluation

We have performed a set of benchmarks to evaluate our approach. All DFAs are
generated randomly with |Σ| = 4 and n states. For each state s and each a ∈ Σ,
we randomly choose a state s′ such that δ(s, a) = s′. If the DFA we obtain is
not minimal, we start again until we obtain a minimal one. Since generating a
random DFA is rather simple, it does not take much time, even if many attempts
are required to find a minimal DFA. To generate examples from this DFA, we
perform random walks of a random length between 0 and 50.

10 F. Avellaneda and A. Petrenko

We compare five algorithms.

– RPNI: We use the implementation provided by Stamina competition [13].

– H&V : It is the SAT approach elaborated by Heule and Verwer. The method
is summarized in Table 1.

– Incremental SAT : It is a SAT approach implemented in an incremental
way recently proposed by us [3]. This approach corresponds to Algorithm 1,
neither using Table 2 for clause generation nor changing the SAT solver.

– Incremental SAT2: It is Incremental SAT in which we add the additional
clauses from Table 2.

– New algo: It is our approach described in Section 4.

The SAT solver used for this experimentation is MiniSat [7] and we use a
VirtualBox with 12 GB of RAM and Intel R© CoreTM i7-2600K processor.

5.1 Inference varying the number of examples

In this section, we compare the five algorithms on DFAs with five states. We limit
the number of states to 5 so that each algorithm is able to solve the problem.
DFAs with more states will be considered in the next section. In this experiment,
see Figure 1, we vary the number of examples and determine time it takes to
infer a DFA.

Number of examples

Ti
m

e
(m

s)

1

10

100

1000

10000

100000

0 10000 20000 30000

RPNI New algo Incremental SAT H&V Incremental SAT2

Fig. 1. Average time over 100 instances to infer a DFA with five states vs the number
of examples.

Learning Minimal DFA 11

We notice that the performances of the New algo, Incremental SAT and
Incremental SAT2 algorithms are almost the same as well as that they behave
best when the learning samples are large enough. The results show that our
approach is faster than H&V and RPNI except in the case where the number
of examples is very small.

Number of examples

%
 o

f
ge

ne
ra

to
rs

 in
fe

rr
ed

0

25

50

75

100

0 10000 20000 30000

RPNI SAT approaches

Fig. 2. Percentage of generators inferred correctly vs the number of examples.

To find the reason for that we determine the percentage of generators cor-
rectly inferred for SAT and RPNI approaches for learning samples of various
sizes, see Figure 2. We have grouped all the SAT approaches into a single curve
because the quality of the obtained solutions is almost the same. This is not sur-
prising because all SAT approaches are focused on finding an optimal solution,
i.e., a minimum DFA consistent with observations. The data indicate that longer
solution time is the price to pay for a higher percentage of good models inferred
by the SAT approaches. After all, RPNI is heuristic, while SAT approaches are
deductive. The obtained results indicate that SAT approaches have an impor-
tant advantage over RPNI. In particular, SAT approaches need about thousand
examples to correctly infer almost all generators, while the RPNI approach needs
more than ten thousand. In addition, when the RPNI approach does not cor-
rectly infer the DFA, the result is generally quite far from the generator and
contains hundreds of states.

Thus, the fact that SAT approaches are rather slow when the size of learning
samples is only a few dozen is not really important, because with so few examples
we are hardly able to infer generators correctly.

12 F. Avellaneda and A. Petrenko

5.2 Inference from learning samples of growing generators

In this section, we focus on experimental comparison of the Incremental SAT ,
Incremental SAT2 and New algo approaches. In the previous section, we saw
that they perform similarly when the number of states in generators is fixed to
five. Here we will push the algorithms to their limits. Thus we set the number of
examples in learning samples at 100,000 and increase the number of generator’s
states. Comparison with RPNI and H&V is not possible here because these
algorithms are unable to proceed with such a large number of examples.

Number of states

Ti
m

e
(s

ec
)

0

50

100

150

200

250

5 10 15 20 25 30 35

New algo Incremental SAT2 Incremental SAT

Fig. 3. Average time over 100 instances to infer a DFA vs the number of generator’s
states

Figure 3 indicates that the three algorithms equally perform when the gener-
ators have less than 15 states. However, for generators with more states, our new
method has a clear advantage. As an examples, DFAs of 27 states are inferred on
average in 2.5 seconds with our new method while it takes more than 4 minutes
with Incremental SAT , and DFAs of 37 states are inferred on average in 15
seconds with our new method while it takes more than 2 minutes without the
RPNI heuristics on decision variables.

Learning Minimal DFA 13

6 Conclusion

In this paper we considered the problem of inferring a minimal DFA from a
learning sample that includes positive and negative examples. Among the ex-
isting approaches, the heuristic approaches, like RPNI, merge states reaching
a local minimum and the exact approaches solve constraints finding a minimal
automaton consistent with observations.

In order to improve the scalability of exact inferring approaches, we made
the following contributions.

First, we proposed to construct the SAT formula incrementally during the
DFA inference, similar to our method for the FSM inference, thus avoiding to
deal with a whole (large) learning sample.

Second, we found a way of combining the two approaches such that the
result surpasses each of them. In particular, to improve the performance of a
SAT solver we proposed to use the RPNI heuristics determining the order in
which free variables are assigned.

Finally, we also suggested new auxiliary variables and additional clauses to be
used in the traditional SAT encoding which accelerate the process of determining
the state incompatibility.

The experimental evaluation of the proposed approach indicates that when
a learning sample is large enough, it gives better results than the classical SAT
solving approaches and the RPNI algorithm. The experimental results show
that the proposed approach is somewhat slower that the latter, but only when
the learning sample is too small to correctly infer the generator from it. These
experiments seem to confirm that the scalability of the SAT solving approach
for DFA inference improves when the SAT formula is built incrementally and a
solver is enriched with a problem specific heuristics.

Acknowledgments This work was partially supported by MEI (Ministère de
l’Économie et Innovation) of Gouvernement du Québec and NSERC of Canada.

References

1. Fadi A Aloul, Arathi Ramani, Igor L Markov, and Karem A Sakallah. Solving
difficult SAT instances in the presence of symmetry. In Proceedings of the 39th
annual Design Automation Conference, pages 731–736. ACM, 2002.

2. Fadi A Aloul, Karem A Sakallah, and Igor L Markov. Efficient symmetry breaking
for boolean satisfiability. IEEE Transactions on Computers, 55(5):549–558, 2006.

3. Florent Avellaneda and Alexandre Petrenko. Fsm inference from long traces. In
International Symposium on Formal Methods, pages 93–109. Springer, 2018.

4. Alan W Biermann and Jerome A Feldman. On the synthesis of finite-state machines
from samples of their behavior. IEEE transactions on Computers, 100(6):592–597,
1972.

5. Cynthia A Brown, Larry Finkelstein, and Paul Walton Purdom Jr. Backtrack
searching in the presence of symmetry. In International Conference on Applied Al-
gebra, Algebraic Algorithms, and Error-Correcting Codes, pages 99–110. Springer,
1988.

14 F. Avellaneda and A. Petrenko

6. Colin De la Higuera. Grammatical inference: learning automata and grammars.
Cambridge University Press, 2010.

7. Niklas Eén and Niklas Sörensson. An extensible sat-solver. In International con-
ference on theory and applications of satisfiability testing, pages 502–518. Springer,
2003.

8. Jon William Freeman. Improvements to propositional satisfiability search algo-
rithms. PhD thesis, Citeseer, 1995.

9. Marijn JH Heule and Sicco Verwer. Software model synthesis using satisfiability
solvers. Empirical Software Engineering, 18(4):825–856, 2013.

10. Joao Marques-Silva. The impact of branching heuristics in propositional satisfia-
bility algorithms. In Portuguese Conference on Artificial Intelligence, pages 62–74.
Springer, 1999.

11. Matthew W Moskewicz, Conor F Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an efficient sat solver. In Proceedings of the 38th annual
Design Automation Conference, pages 530–535. ACM, 2001.

12. José Oncina and Pedro Garcia. Inferring regular languages in polynomial updated
time. In Pattern recognition and image analysis: selected papers from the IVth
Spanish Symposium, pages 49–61. World Scientific, 1992.

13. Neil Walkinshaw, Bernard Lambeau, Christophe Damas, Kirill Bogdanov, and
Pierre Dupont. Stamina: a competition to encourage the development and as-
sessment of software model inference techniques. Empirical software engineering,
18(4):791–824, 2013.

