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Abstract

The paper focuses on the problems of passive and active FSM inference as well as
checking sequence generation. We consider the setting where an FSM cannot be reset so
that its inference is constrained to a single trace either given a priori in a passive inference
scenario or to be constructed in an active inference scenario or aiming at obtaining
checking sequence for a given FSM. In each of the last two cases, the expected result is
a trace representing a checking sequence for an inferred machine, if it was not given. We
demonstrate that this can be achieved by a repetitive use of a procedure that infers an FSM
from a given trace (identifying a minimal machine consistent with a trace) avoiding
equivalent conjectures. We thus show that FSM inference and checking sequence con-
struction are two sides of the same coin. Following an existing approach of constructing
conjectures by SAT solving, we elaborate first such a procedure and then based on it the
methods for obtaining checking sequence for a given FSM and inferring a machine from a
black box. The novelty of our approach is that it does not use any state identification
facilities. We demonstrate that the proposed approach can also be constrained to find a
solution in a subset of FSMs represented by a nondeterministic mutation machine.
Experiments with a prototype implementation of the developed approach using an existing
SAT solver indicate that it scales for FSMs with up to a dozen of states and requires
relatively short sequences to identify a black box machine.
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1 Introduction

Model-based testing from finite state models of systems, when it is only possible to interact
with the system through its input/output interfaces, relies on traversing transitions of the
model, and being able to check that states reached after transitions in the system are consistent
with those expected from the model. At the end of the test, the goal is to be able to guarantee
that the system under test behaves as expected in the model. So the test must be built as a
checking sequence of inputs that can uniquely identify (up to equivalence) a given model
machine.

Computing a checking sequence from a finite state model dates back to the very early
history of automata in computer science, starting with the work of Moore (Moore 1956) and
many approaches have been proposed to generate checking sequences for various types of
models under different assumptions w.r.t. determinism, completeness, and the existence of
specific sequences such as distinguishing sequences (Hennie 1965), signatures (Sabnani and
Dahbura 1988), state identifiers (Petrenko and Yevtushenko 2005), etc.

More recently, at the turn of the century, model-based approaches have led to an interest in
inference techniques. Instead of checking whether a system behaves as specified by a model, it
works the other way round: we try to build a model, called a conjecture that will predict as
accurately as possible the behavior of a system. This can be based on a corpus of given
observed behaviors of the system (passive inference), or on the ability to submit test sequences
(active inference). One key driver for such approaches is that experience in industrial context
has shown that building and maintaining accurate and up-to-date models was complicated and
needed specific expertise. Being able to derive models automatically relieves the burden of
creating and maintaining them.

Building a checking sequence can be seen as a top-down approach (from model to
implementation) and inference as bottom-up approach (from implementation to
conjectured model). The two are in fact closely linked: in active inference, if a sequence
is built that uniquely identifies a machine, then this sequence is a checking sequence for
this machine. The main difference is in the starting point: for checking sequence
generation, we assume we know the (specification) machine to be identified. For
inference, the machine is unknown.

In this paper, we propose an iterative approach that alternates passive inference with
construction of checking experiments. Initially, an input sequence will be too short to uniquely
identify a machine. But one can exhibit one of many possible conjectures that would match the
observed input/output sequence (the running trace). So the idea is to build a checking
experiment that will distinguish among conjectures, and which is appended to the current
trace. Following this experiment, the set of potential conjectures is reduced, and the process is
iterated until we get to a point where the set is reduced to a singleton, at which point the input
projection of the observed trace is a checking sequence.

Interestingly, this theoretical framework had already been envisioned by J. Kella, in one of
the early papers on passive inference (Kella 1971). He stated that the state merging technique
could possibly be used to iteratively construct a checking experiment.

Our approach shows that it is indeed possible to uniquely identify a nonresettable complete
deterministic machine, while building a checking sequence for it, with no prior knowledge
apart from the number of states and the input set of the machine. Contrary to previous work
(Groz et al. 2018), this approach does not require a characterization set or another assumption
on sequences to distinguish states in the machine.
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This paper is based on a conference publication (Petrenko et al. 2017), which we extend by
adding new results concerning constraining inference and checking sequence generation with a
so-called mutation machine (Petrenko and Yevtushenko 1992). A mutation machine models
potential faulty implementations for checking sequence and constrains a set of FSMs to be
inferred either from a given trace in passive inference or from a black box in active inference.
We demonstrate that the approach can be adapted to solve the inference and checking sequence
problems in presence of a mutation machine. We also provide experimental results obtained
using the real application benchmarks (Radboud benchmark).

Section 2 provides definitions for our formal framework, while Section 3 defines the
inference problems and checking sequence generation in our context, i.e., from a single trace
for a nonresettable machine, in relation with the state of the art. Section 4 shows how passive
inference, i.e., the computation of a conjecture from a single trace, can be encoded into a
Boolean formula, so that a SAT solver can be used to efficiently get a conjecture. Sections 5
and 6 present our iterative approaches, showing two sides of the same coin: checking sequence
generation and FSM inference. Section 7 is focused on inference and checking sequence
problems in presence of a mutation machine. Section 8 presents experiments with a prototype
implementation of the developed approach using an existing SAT solver. Section 9 concludes.

2 Definitions

A Finite State Machine (FSM) M is a 5-tuple (S, s0, I, O, T), where S is a finite set of states
with an initial state s0; I and O are finite nonempty disjoint sets of inputs and outputs,
respectively; T is a transition relation T ⊆ S × I ×O × S: (s, a, o, s′) ∈ T is a transition. When
we need to refer to the machine M in a state s ∈ S, we write M/s.

M is completely specified (complete) if for each tuple (s, a) ∈ S × I there exists a transition
(s, a, o, s′) ∈ T. It is deterministic if for each (s, a) ∈ S × I there exists at most one transition (s,
a, o, s′) ∈ T; otherwise, it is nondeterministic. FSMM is a submachine ofM′ = (S′, s0, I, O, T′)
iff S ⊆ S′ and T ⊆ T’.

FSMs considered in this paper are deterministic, except for mutation machines considered
in Sect. 8.

An execution ofM/s is a sequence of transitions forming a path from s in the state transition
diagram of M. The machine M is initially connected if for any state s ∈ S there exists an
execution from s0 to s.M is strongly connected if the state transition diagram ofM is a strongly
connected graph.

A trace of M/s is a string of input–output pairs which label an execution from s. Let Tr(s)
denote the set of all traces of M/s and TrM denote the set of traces of M/s0. For traceω ∈ Tr(s),
we use s-after-ω to denote the stateM reached after the execution ofω, for an empty trace ε, s-
after-ε = s. When s is the initial state then we write M-after-ω instead of M/s0-after-ω.

Let also out(s, α) be an output sequence produced by the input sequence α ∈ I* inM/s. For
input sequence α applied at state s, we let trs(α) denote the trace with the input projection α.

Given an input sequence α, states s, s′ ∈ S are equivalent w.r.t. α, if out(s, α) = out(s′, α),
denoted s≅ α s′, they are distinguishable byα, if out(s,α) ≠ out(s′,α), denoted s ≇α s′ or simply s ≇
s′. A distinguishing sequence ofM is an input sequence α for which the output sequence produced
by M in response to α identifies the state of M: for all s, s′ ∈ S, out(s, α) ≠ out(s′, α). A
characterization set of M is a set of input sequences such that for every s, s′ ∈ S, there exists a
sequence α in the set such that out(s, α) ≠ out(s′, α). States s and s′ are equivalent if they are
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equivalent w.r.t. all input sequences, thus Tr(s) = Tr(s′), denoted s ≅ s′. The equivalence and
distinguishability relations between FSMs are similarly defined. Two FSMs are equivalent if their
initial states are equivalent. A complete FSM is minimal if it has no equivalent states.

Given two FSMsM = (S, s0, I,O, T) andM′ = (S′, s′0, I,O, T′), their product M ×M′ is an FSM
(P, p0, I,O,H), where p0 = (s0, s’0) is such thatP andH are the smallest sets satisfying the following
rule: If (s, s′) ∈P, (s, a, o, t) ∈ T, (s′, a, o′, t′) ∈ T′, and o = o′, then (t, t′) ∈P and ((s, s′), a, o, (t, t′)) ∈H.

Lemma 1 If M and M′ are complete machines then they are equivalent iff the product M ×M′
is complete in the input set I.

Two complete FSMs M = (S, s0, I, O, T) and M′ = (S′, s′0, I, O, T′) are called isomorphic if
there exists a bijection f: S→ S′ such that f(s0) = s′0 and for all a ∈ I, o ∈ O, and s ∈ S, f(s-after-
ao) = f(s)-after-ao. Isomorphic FSMs are equivalent, but the converse does not necessarily
hold. Note that we do not require equivalent machines to be minimal.

Given a traceω ∈ (IO)* of length |ω|, let Pref(ω) be the set of all prefixes ofω. We define
a linear FSMW = (X, x0, I,O,Dω), whereDω is a transition relation, such that |X| = |ω| + 1, and
there exists a bijection f: X→ Pref(ω), such that f(x0) = ε, (xi, a, o, xi + 1) ∈ Dω iff f(xi)ao = f(xi +

1) for all i = 0, …, |ω| − 1, in other words, TrW = Pref(ω). We call it an ω-machine W.
While the set of traces of the ω-machine is Pref(ω), there are many FSMs which have the

traceω among other traces. We restrict our attention to the class of FSMs with at most n states
and alphabets I and O, denoted ℑ(n, I, O). An FSM C = (S, s0, I, O, T), C ∈ ℑ(n, I, O) is called
anω-conjecture, ifω ∈ TrC. Let ℑω(n, I, O) be the set of allω-conjectures in the set ℑ(n, I, O).
Clearly, the ω-machine is also an ω-conjecture, if |ω| < n.

The states of theω-machineW = (X, x0, I, O, Dω) and anω-conjecture C = (S, s0, I,O, T), C ∈
ℑω(n, I,O) are closely related to each other. A state of theω-machine reached after any prefix of the
traceω corresponds to a unique state of theω-conjecture that is reached after that prefix. Formally,
there exists amappingμ:X→ S, such thatμ(x) = s0-after-f(x), the state reached byCwhen the trace
f(x) ∈ Pref(ω) is executed. The mapping μ induces a partition πC on the set X such that x and x′
belong to the same block of the partition πC, denoted x = πC x′, iff μ(x) =μ(x′).

Given anω-conjecture C with the partition πC, let D be anω′-conjecture with the partition
πD, such that ω′ ∈ Pref(ω), we say that the partition πC is an expansion of the partition πD, if
its projection toω′ coincides with the partition πD; viz. πD = {P ∩ X′| P ∈ πC} where X′ = {xi ∈
X | i ≤ |ω′|}.

An input sequenceα ∈ I* is a checking sequence for a complete FSMMwith n states if for each
strongly connected FSMN ∈ ℑ(n, I,O), such thatN≅ αM/s, where s ∈ S, it holds thatN≅M/s. The
trace trs(α), where α is a checking sequence, is called a checking trace ofM. In this definition, we
allow uncertainty in the initial state of M since it may have other states which converge with the
initial state on a checking trace (an example of such an FSM can be found in Sect. 5).

A checking sequence is a special type of checking experiments for FSMs; it is usually
considered for FSM-based testing when a reset operation in FSM implementations is unavail-
able or formidably costly to execute.

3 Problem statement and related work

We consider the following closely related problems, passive and active FSM inference as well
as checking sequence construction. Significantly, we restrict our setting to the case where an
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FSMmay not be reset, so that the definitions we give here refer to a single trace. Actually, if an
FSM can be reliably reset, the reset sequences can be included in the trace, so the definitions
below can cover the general case. We state the problems using the definitions given above.

Passive inference is a classical problem whereby given a trace ω we need to build an
ω-conjecture with a minimal number of states (Biermann and Feldman 1972; Gold 1978;
Kella 1971).

Active inference, aka active automata learning, is another problem addressed in the
literature (De la Higuera 2010). Restated in our FSM context, given a black box, which
behaves as an unknown minimal complete strongly connected FSM with the input alphabet I
and the number of states equal to n, infer the FSM, i.e., build anω-conjecture equivalent to the
FSM and its checking trace ω.

The checking sequence problem differs from active inference in assuming that the expected
behavior of a black box with at most n states submitted for testing is given as a strongly connected
FSM M called a specification machine (which is unknown in active inference) and we need to
determine its checking traceω. The relation to passive inference is direct, onceω is constructed, any
ω-conjecture must be equivalent to M.

In this section, we briefly discuss the existing approaches addressing these problems which
do not rely on the existence of a reset operation.

3.1 Passive inference from a single trace

The passive FSM inference problem is stated by Kella in 1971 (Kella 1971) as
sequential machine identification and later as a system/automaton identification problem
by Gold (Gold 1978). The problem has been studied ever since. The problem is known
to be computationally very hard; nevertheless, numerous proposals have been made,
mainly on developing state merging techniques to transform an ω-machine into an ω-
conjecture as small as possible, see, e.g., (Kella 1971; Yao et al. 1993), etc. The most
recent approaches are based on satisfiability (SAT) solvers (Abel and Reineke 2015;
Heule and Verwer 2010).

In Sect. 4, we propose an approach to build anω-conjecture within a bound on the number
of states using a SAT solver that avoids obtaining conjectures which were already considered.

3.2 Checking sequence problem

The problem of checking sequence generation from an FSM has a long history starting from
work by Moore (Moore 1956) and Hennie (Hennie 1965). It has been known since Moore
(Moore 1956) that a strongly connected reduced FSM can always be identified (i.e., it
possesses a checking sequence), even though the length of the sequence can be exponential
in the bound on its number of states. What we provide in this paper is a new method to build a
checking sequence.

Almost all existingmethods require that a machine be complete andminimal.Moreover, the vast
majority of the proposed methods only apply to FSMs which have distinguishing sequences or
distinguishing sets, see, e.g., (Boute 1974; Gonenc 1970; Hierons and Ural 2006; Simao and
Petrenko 2008; Simao and Petrenko 2009; Yannakakis and Lee 1995). Not all FSMs possess these
sequences and their construction is a nontrivial problem. Only fewmethods can generate a checking
sequence from a complete and minimal FSM which has just a characterization set and no other
distinguishing sets, see (Hennie 1965; Porto et al. 2013; Rezaki and Ural 1995). Moreover, they
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cannot be called efficient, since the size of a checking sequence generated by using a characterization
set grows exponentially with the length and number of sequences in the characterization set
(Vasilevski 1973).

The problem of checking sequence generation without even checking the existence of
distinguishing sequences or finding an “optimal” or any other characterization set remains
open, to the best of our knowledge. In Sect. 5, we propose an approach that does not assume
any distinguishing or characterization set computation.

3.3 Active inference without reset

Active inference has most often been addressed in the context of learning from samples and
queries (De la Higuera 2010; Groz et al. 2008), but the problem of dealing with a single trace
has not received a lot of attention. An early attempt was made in (Rivest and Schapire 1993),
as an adaptation to Angluin’s L* algorithm. It assumes that an external oracle can be queried to
provide a counterexample (hence an input sequence to distinguish the black box and the
conjecture), and starts with the knowledge of a homing sequence. More recently, an approach
was proposed that does not require an external oracle, but still assumes knowledge of a
characterization set (Groz et al. 2018).

However, the assumptions about the existence of an external oracle, knowledge of homing or
state characterizing sequences, such as distinguishing sequences and characterization sets, are not
easy to justify in practice. Therefore, the problem of active inference of FSMs with neither reset
operation nor strong assumptions about a given black box remains open. In Sect. 6, we propose an
approach that does not require such assumptions.

4 Passive inference with SAT solving

Since an ω-machine is itself an ω-conjecture, the minimization problem boils down to
merging states of the ω-machine without introducing traces that would contradict the
trace ω. Therefore, by encoding a trace into a Boolean formula and expressing state
merging possibilities in that formula, we may use a SAT solver to determine acceptable
mergers.

4.1 Problem encoding

Here, we present a procedure for encoding a trace into a Boolean formula, and at the same time
express a constraint on the number of states.

Let W= (X, x0, I, O, Dω) be an ω-machine. To find an ω-conjecture with at most n states
amounts to determining a partition π on the set of states X such that the number of blocks does not
exceed n. This problem can be cast as a constraint satisfaction problem (CSP) (Carbonnel and
Cooper 2016). Let X be {x0,…, x|ω|}, so each integer variable represents a state of theω-machine.
Its value defineswhich block the state belongs to inπ. Since theω-conjecturemust be deterministic,
the state variables should satisfy the following constraint:

∀xi; x j∈X :

if xi ≇ xj then xi ≠ xj and
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if ∃a∈ I s:t:out xi; að Þ ¼ out x j; a
� �

¼ o then xi ¼ x j ⇒ xi−after−ao ¼ x j−after−ao ð1Þ

If the number of states in an ω-conjecture to be constructed should be at most n then xi ∈ {0,
…, n - 1}. Then, an assignment of values to variables in {x0,…, x|ω|} such that the formula (1)
is satisfied defines a mapping μ: X→ S, where S is the set of states of anω-conjecture, i.e., the
mapping μ defines a partition of X into n blocks.

These formulas can be translated to SATusing unary coding for each integer variable x ∈ X, such
that x is represented by n Boolean variables vx,0,…, vx,n-1. For each x ∈ X, we have the clause:

vx;0∨…∨vx;n−1 ð2Þ

These clauses mean that each state of the ω-machine W should be in at least one block.
For each state, x ∈ X and all i, j ∈ {0, …, n - 1} such that i ≠ j, we have the clauses:

:vx;i∨:vx; j ð3Þ

The clauses mean that each state of the ω-machine W should be in at most one block.
Since a sought-afterω-conjecture must be deterministic, the formula (1) is encoded into the

following clauses. First, distinguishable states of W should be in different blocks, so for every
x, y ∈ X such that x ≇ y and all i ∈ {0, …, n − 1}

:vx;i∨:vy;i ð4Þ

Second, states of W equivalent w.r.t. some input if placed in the same block must have their
successors also in one block. Hence, for all xi, xj ∈ X such that out(xi, a) = out(xj, a) = o and all
i, j ∈ {0, …, n − 1} we have a formula which can directly be translated into clauses

vx;i∧vx0;i
� �

⇒ v x−after−aoð Þ;i⇒v x0−after−aoð Þ;i

� �
ð5Þ

To simplify learning that x = y for some x, y ∈ X, we further rewrite the clauses (4) and (5)
using auxiliary variables ex,y modeling the fact that x = y. For every x, y ∈ X such that x ≇ y we
have

:ex;y ð6Þ

For all x, y ∈ X such that out(x, a) = out(y, a) = o, we have

ex;y⇒ex−after−ao;y−after−ao ð7Þ

The relation between auxiliary state variables is expressed in the following clauses. For every
x, y ∈ X and all i ∈ {0, …, n − 1}

ex;y∧vx;i⇒vy;i ð8Þ

:ex;y∧vx;i⇒:vy;i ð9Þ

The resulting Boolean formula Φ is the conjunction of clauses (2), (3), (6), (7), (8), and (9).
Let M(μ, ω) be the FSM built by merging all the states from the same block, such that a

transition (s, a, o, s′) exists inM iff ∃ xi ∈ X such that s = μ(xi), s′ = μ(xi + 1) and (xi, a, o, xi + 1) is
a transition in the ω-machine.

Lemma 2 Φ is satisfiable iff M(μ, ω) is deterministic and has at most n states.
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Indeed, clauses (2) and (3) encode that μ maps X to S = {0..n − 1} and μ(X) is uniquely
defined; (6), (8), (9) define auxiliary variables ex,y. And clause (7) expresses transition
compatibility to ensure that the conjecture is deterministic.

To check satisfiability, one can use any of the existing solvers. If a solution exists, then we have
anω-conjecture with n or fewer states. The latter is obtained from the determined partition on X. In
the context of passive inference, we are usually interested in finding an ω-conjecture as small as
possible. This requires several trials with varying values of n.

4.2 Passive inference of different (new) conjectures

In the context of active inference as well as checking sequence construction, we aim at
obtaining a single ω-conjecture while avoiding constructing isomorphic conjectures. A key
building block will be provided by the following procedure to infer a conjecture that differs
from already considered conjectures. We identify isomorphic conjectures by their common
partition. Hence, we add as a constraint that we look for anω-conjecture that does not expand
a set of “forbidden” partitions. If such ω-conjectures are found, they will be used in Sects. 5
and 6 to augment the trace ω by adding suffixes that eliminate distinguishable conjectures
until only one remains.

Algorithm 1 Infer_conjecture(ω, n, Π).

Lemma 3 formula is satisfiable iffM(μ,ω) is deterministic and nonequivalent to anyM′ such
that πM′ ∈ Π.

Notice that a resulting ω-conjecture M(μ, ω) with n states may have states unreachable
from the initial state, once they are removed the final conjecture becomes strongly connected
with fewer than n states.

5 Checking sequence construction

The idea of the proposed method for checking sequence (trace) generation is to find an
FSM that reacts as the given specification FSM to a current input sequence using passive
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inference and eliminate it by extending the sequence with a suffix distinguishing the two
machines or forbidding the passive inference from further regeneration of the conjecture
if they cannot be distinguished. This process iterates until no more conjectures distin-
guishable from the specification FSM can be found. The procedure is implemented in
Algorithm 2.

Algorithm 2 Generating a checking trace.

Algorithm 2 calls Infer_conjecture(ω, n,Π), which in turn calls a SAT solver constraining it
to avoid solutions of already considered conjectures.

Note that the Boolean formula used by the SAT solver is built incrementally by saving a current
formula and adding only new clauses each time a traceω or a set of partitions Π is augmented.

Theorem 1 Given an FSM M with n states, Algorithm 2 returns a checking trace ω.

Proof Algorithm 2 always terminates because the number of all possible conjectures with the fixed
input alphabet within a given bound on the number of states n is finite, and once they are complete,
they are excluded from further iterations. When Algorithm 2 terminates, the resulting trace ω is
indeed a checking one, since by lemma 3, no conjecture exists that is distinguishable from the given
FSMM, after having executedω.

Note that all complete conjectures equivalent toM after having executedω are excluded because
as soon as one is found (including possiblyM itself), according to the lemma 1, its partition is added
to Π.

Example. Consider the FSM in Fig. 1. It has no distinguishing sequence; its characterization
set is {a, b}.

This example is used in (Porto et al. 2013), where a method for checking sequence generation
from a minimal FSMwithout distinguishing sequence is proposed. Using this example, the authors
of (Porto et al. 2013) compare their method with those of (Hennie 1965; Rezaki and Ural 1995) and
report that the length of checking sequence obtained by their method is 120, while that of (Hennie
1965) is 171 and 248 of (Rezaki and Ural 1995). A prototype tool implementing Algorithm 1 (see
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Sect. 8.1) uses the SATSolver CryptoMiniSat (Soos 2009) and returns for this example the checking
trace of length 15.

We provide some details concerning its executions. Initially, ω= ε, n= 3, Π=∅, and formula

becomes

v0;0 ∨v0;1 ∨v0;2
� �

:v0;0 ∨ :v0;1
� �

:v0;0 ∨ :v0;2
� �

:v0;1 ∨ :v0;2
� �

:

call-solver(formula) returns a single state ω-conjecture C1 with no transitions. The product
C1-after-ε ×M-after-ε is not complete, the undefined input is a. ω:= ωtr(βa) = a0, since
β = ε. The ω-machine is now an FSM with a single transition between two states. Four
variables are introduced: v1,0, v1,1, v1,2, and e0,1. The following clauses are added to
formula:

v1;0 ∨v1;1 ∨v1;2
� �

:v1;0 ∨ :v1;1
� �

:v1;0 ∨ :v1;2
� �

:v1;1 ∨ :v1;2
� �

e0;1 ∨:v0;0 ∨ :v1;0
� �

e0;1 ∨ :v0;1 ∨ :v1;1
� �

e0;1 ∨ :v0;2 ∨:v1;2
� �

:e0;1 ∨ :v0;0 ∨:v1;0
� �

:e0;1 ∨:v0;1 ∨:v1;1
� �

:e0;1 ∨ :v0;2 ∨ :v1;2
� �

v0;0 v0;0 ∨ :v1;1
� �

v0;1 ∨:v1;2
� �

Then call-solver(formula) returns theω-conjectureC2with a single transition between two states. The
product C2-after-ω×M-after-ω is not complete, the undefined input is again a.ω:=ωtr(βa) = a0a1,
since β= a0. The ω-machine is now a three-state FSM with two transitions. Five variables are
introduced: v2,0, v2,1, v2,2, and e0,2, e1,2. Twenty new clauses are added to formula. Table 1 provides a
summary of all 15 executions of Algorithm 2 yielding a checking trace. One can notice that twice the
algorithm does not add variables; this happens when the condition “C-after-ω×M-after-ω is com-
plete” is satisfied and a partition is added to the set Π with a single clause added to formula. Its last

0 1 2

b/0

a/0

b/1
a/0

b/0
a/1

Fig. 1 The FSM M

Table 1 Checking trace generation for the FSM in Fig. 1

Instance
number

Trace Number of added
variables

Number of added
clauses

Solving in
μs

1 ε 3 4 58
2 a0 4 13 657
3 a0a1 5 19 1006
4 a0a1a0 6 26 2067
5 a0a1a0a1 7 33 2428
6 a0a1a0a1b0 8 36 4007
7 a0a1a0a1b0b1 9 43 4282
8 a0a1a0a1b0b1b0 10 50 6457
9 a0a1a0a1b0b1b0a0b0 23 122 9382
10 a0a1a0a1b0b1b0a0b0b1 13 70 8452
11 a0a1a0a1b0b1b0a0b0b1a0 14 77 14,281
12 a0a1a0a1b0b1b0a0b0b1a0a1 15 84 12,972
13 a0a1a0a1b0b1b0a0b0b1a0a1 0 1 14,713
14 a0a1a0a1b0b1b0a0b0b1a0a1b0a0a1 51 292 28,203
15 a0a1a0a1b0b1b0a0b0b1a0a1b0a0a1 0 1 15,395
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instance is unsatisfiable since the current trace is a checking one. It is interesting to notice inTable 1 that
time required to solve an instance does not grow linearly with the number of variables and clauses. In
our incremental approach, some newly added clauses in fact speed up finding a solution.

Compared to the state of the art, our approach’s advantage is that the algorithm does not require
the FSM to be minimal; moreover, it can be adapted to accept even a partial FSM.We are not aware
of any method for checking sequence construction for FSMs which are partially defined and have
compatible states, i.e., machines without a characterization set. The only existing method which
deals with such machines is (Petrenko and Yevtushenko 2005), but it relies on the usage of the reset
operation, as opposed to the approach proposed here.

Algorithm 2 can also be adapted to perform FSM minimization. Given a partial FSM M

with compatible states, one can use it to try to build a checking trace and inferring conjectures
by incrementing the number of states, starting from n = 1 until a checking trace is built and thus
a conjecture (quasi-) equivalent to M is found.

6 Active inference approach

The iterative approach of Algorithm 2, which relies on computing a checking experiment for anω-
conjecture that is consistent with the current prefix trace, can be adapted to active inference. The trick
is to find an experiment that distinguishes not between the specification FSMM (as it is unknown)
andω-conjecture, but between two possibleω-conjectures and retain the one that is consistent with
the observations on the black box.

Given a black box BB, which behaves as an unknown minimal complete strongly connected
FSMwith the input alphabet I and the number of states equal to n, Algorithm 3 infers the FSM and
constructs its checking trace.

Algorithm 3 Inferring BB and determining its checking trace.

Software Quality Journal



Theorem 2 If a black box behaves as a minimal complete strongly connected FSM with the
input alphabet I and the number of states equal to n, Algorithm 3 infers it and constructs a
checking sequence and trace for it.

Proof Algorithm 3 follows the steps of Algorithm 2, just replacing the FSM M by a current
conjecture. This does not influence its termination since it only occurs when no more
distinguishable conjecture can be found. And at some point, because the black box behaves
as an FSM with n states, it will be returned by Infer_conjecture, so that the remaining
conjecture is equivalent to the FSM of the black box initialized in some state. The resulting
trace produced from that state is a checking trace, as in Theorem 1.

Notice that assuming that the black box machine is minimal just makes the inference
problem uniquely defined, since equivalent machines cannot be distinguished. Completeness
implies that the black box never “refuses” any input. On the other hand, Algorithm 3 cannot
infer an FSM that is not strongly connected, though it still infers a conjecture that cannot be
distinguished from the black box machine after the execution of the resulting trace.

Example. Consider that the FSMM in Fig. 1 is a BB. We want to infer it assuming that n =
3. The prototype tool similar to the one for checking trace generation infers the FSM M along
with the checking trace a0a1a0b0b1b0b1a0a1b0a0a1a0a1 of length 14 that turned to be one
input shorter than that when the FSM M serves as a specification machine. Algorithm 3
generated 17 instances in 0.04037 s, while Algorithm 2 considered 15 instances in 0.0436 s.
The number of variables and clauses are close to those in Table 1, which allows us to not
provide a similar table for this example.

7 Constrained inference and checking sequence generation

7.1 Mutation machine

The approach elaborated in the previous sections uses as an input the universe of all possible
FSMs over the alphabets I and O, having at most n states, ℑ(n, I, O). A checking sequence is
indeed defined assuming that any implementation has no more than n states, while inference
continues until an FSM from ℑ(n, I, O) is identified. Since the cardinality of the set ℑ(n, I, O)
can be estimated as Σk = 1

k = nk|O|k|I|/k!, it should be expected that constructed checking se-
quences for each of the two problems quickly become formidably long for nontrivial FSMs.
This motivates the search for assumptions or constraints which could lead to shorter checking
sequences and facilitate inference of complex machines. To this end, we propose to constrain
the set ℑ(n, I, O) using a concise representation of its subset by a complete FSM, over the
alphabets I and O, having n states, called a mutation machine, such that if a deterministic
specification FSM is given for checking sequence construction then it is a submachine of the
mutation machine (Petrenko and Yevtushenko 1992; Koufareva et al. 1999).

Figure 2 gives an example of a nondeterministic mutation machine for the specification
machine in Fig. 1.

The universe ℑ(n, I, O) is represented by a chaos machine with n states and all possible
transitions between them, as each FSM in ℑ(n, I, O) is a complete deterministic submachine of
the chaos machine.

Mutation machines which are in turn submachines of the chaos machine compactly specify
subsets of ℑ(n, I, O), which can be chosen using test assumptions about potential faults to be
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detected by checking sequences or about a black box submitted for model inference. The
assumptions are application domain specific.

We are aware of only one work where a checking sequence is generated with respect to a
given mutation machine (Petrenko and Simao 2017). Compared to that work, our SAT-based
approach elaborated in Sect. 7.2 results in shorter sequences, as our experimental evaluation
shows.

To the best of our knowledge, active inference has not been parametrized with mutation
machines. In Sect. 7.3, we enhance the approach to use the assumption that a black box
behaves as a deterministic submachine of a given nondeterministic mutation machine.

7.2 Inference and checking sequence construction

Given a trace produced by a deterministic submachine of a known mutation machine, we want
to infer the submachine.

Passive inference with SAT solving from a given trace ω follows the same approach as in
Sect. 4. Since now, instead of allowing any solution in ℑ(n, I, O), we should ensure that only
deterministic submachines of a given mutation machine are solutions, the encoding elaborated
in Sect. 4.1 has to be slightly modified.

As before, we use Boolean variables vx,0,…, vx,n-1, variables ex,y for x, y ∈ X, along with the
clauses (2), (3), and (6), and to constrain solutions to deterministic submachines of the
mutation machine, we introduce auxiliary variables representing transitions.

Let i, j ∈ {0,…, n - 1}, a ∈ I, o ∈ O, Boolean variable zi,a,o,j is True if and only if in the ω-
machine W = (X, x0, I, O, Dω) there exists a transition with input a and output o such that its
source state is in the block i and the end state is in the block j. We define the following clauses.

For all i, j, j′ ∈ {0, …, n - 1}, a ∈ I, o, o′ ∈ O such that j ≠ j′ or o ≠ o′

:zi;a;o; j∨:zi;a;o0 ; j0 ð10Þ

These clauses encode formula (1) expressing determinism of any solution. The clause (10) is
redundant since it also enforces the determinism as clauses (6) and (7). We shall still use it, as
our experiments indicate that it speeds up the process of finding a solution.

For each (i, a, o, j) which is not a transition of the mutation machine MM

:zi;a;o; j ð11Þ

These formulas constrain solutions to submachines of MM.
For each (x, a, o, x′) ∈ Dω: and every i, j ∈ {0, …, n - 1}

zi;a;o; j∨:vx;i∨:vx0 ; j
� �

and :zi;a;o; j∨:vx;i∨vx0 ; j
� �

ð12Þ

These clauses express the relation between z and x.

0 1 2

b/0

a/0

b/1
a/0

b/0

a/1

a/0 a/0

a/1

Fig. 2 The mutation machine for
the specification machine in Fig. 1;
doted arcs present mutated
transitions added to the
specification machine
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As a result, passive inference constrained by a mutation machine can be performed by
Algorithm 1, using a modified formula which contains in addition the clauses (10), (11), and
(12).

Next, we consider the problem of checking sequence construction when it is known that
any implementation is not an arbitrary FSM with at most n states, but a complete deterministic
submachine of a mutation machine with n states.

Given a complete FSMM with n states, checking sequence is defined in Sect. 2 as an input
sequence α ∈ I*, if for each strongly connected FSM N ∈ ℑ(n, I, O), such that N ≅ α M/s, where
s ∈ S, it holds that N ≅M/s. Replacing the universe ℑ(n, I, O) by the set of strongly connected
submachines of a complete mutation machine, we obtain the following definition.

An input sequence α ∈ I* is a checking sequence for M w.r.t. MM, if for each strongly
connected deterministic submachine N ofMM, such that N ≅ αM/s, where s ∈ S, it holds that N
≅M/s.

Notice that a submachine of the mutation machine inferred from a given trace could be a
partial FSM, if a given trace is insufficient to obtain a complete FSM. When constructing a
checking sequence for a complete specification machine, we should focus on complete
submachines of the given mutation machine. The completeness of solutions can be ensured
by adding the following constraint on the values of variables zi,a,o,j.

For all a ∈ I and all i ∈ {0, …, n - 1}

∨ j¼1
n−1∨k¼1

k¼jOjzi;a;ok; j ð13Þ

Adding these clauses solves the problem of checking sequence constrained with a mutation
machine, as stated in the following.

Theorem 3 Algorithm 2 calling Algorithm 1 with the formula extended with clauses (11),
(12), and (13) generates a checking trace for a given specification machine M w.r.t. a mutation
machine MM.

Proof Assume that the resulting trace ω is not a checking trace for M w.r.t. a mutation
machine MM. Since the clauses (11), (12), and (13) constrain ω-conjectures to submachines
of MM, there exists a strongly connected submachine N of MM, such that N ≅ α M/s, where α
is the input projection of the trace and s ∈ S, but N ≇ M/s. Hence, N-after-ω ≇ M-after-ω.
According to Algorithm 2, if N accepts ω, then its partition must be in the set Π. This is only
possible if the product N-after-ω × M-after-ω is a complete FSM, which means that N-
after-ω ≅M-after-ω. The obtained contradiction proves the statement.

Example. We illustrate the checking sequence generation constrained by a mutation
machine in Fig. 2 using the FSM in Fig. 1 as a specification machine. Figure 3 shows
intermediate ω-conjectures leading to the checking sequence ω = a0a1a0a1. The first con-
jecture C1 in Fig. 3a is obtained with ω set to ε. Since the clauses (11), (12), and (13) ensure
that a conjecture is a complete machine and use only transitions of the mutation machine, all
three transitions labeled with input b are reproduced in the conjecture. Note that it is not the
only possible solution that could be found by a solver. The product C1-after-ω × M-after-ω,
whereω = ε has the undefined input a in the state reached with a, since the two machines are
distinguished by the input sequence aa. As a result, ω = a0a1. Figure 3b shows the second
conjecture C2; C2-after-a0a1 is distinguishable from M-after-a0a1 by a, then ω = a0a1a0. C3

in Fig. 3c is equivalent to the specification machineM. The partition {ε; a0, a0a1a0, a0a1} is
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added to the set Π and the conjecture C4 in Fig. 3d is generated from ω = a0a1a0. C4-after-
a0a1a0 is distinguishable from M-after-a0a1a0 by a, then ω = a0a1a0a1. Since no more
solutions can be found, a0a1a0a1 is a checking trace.

Comparing the length of the checking trace w.r.t. the mutation machine in Fig. 2 with that
for the set ℑ(n, I, O), i.e., the chaos mutation machine, constructed in Sect. 5, we notice a
drastic reduction which comes with no surprise: the smaller the set, the shorter the test.

Similar to the checking trace construction, the problem of active inference constrained by a
mutation machine is solved using Algorithm 3, as stated in the following.

Theorem 4 If a black box behaves as a complete strongly connected submachine of a given
mutation machine with n states, Algorithm 3 calling Algorithm 1 with the formula extended
with clauses (10), (11), (12), and (13) infers it and constructs a checking sequence and trace for
it.

Proof Theorem 2 states that Algorithm 3 infers a minimal complete strongly connected FSM
in ℑ(n, I, O) and constructs a checking sequence. As argued in the proof of Theorem 3,
additional clauses (10), (11), (12), and (13) used by Algorithm 1 just reduce the set ℑ(n, I, O) to
the complete submachines of the mutation machine. Hence, Algorithm 3 infers a complete
submachine of the given mutation machine and constructs a checking sequence and trace w.r.t.
a mutation machine.

Figure 3 illustrates in fact both checking sequence construction and active inference with
the same resulting trace resulting in the FSM in Fig. 1.

8 Experiments

8.1 Implementation

We have implemented all the algorithms in a prototype tool. Since the crucial step of our
approach is the formulation of a SAT instance, a number of measures were taken during the
implementation aiming at reducing the time required by a solver. One of them is symmetry
breaking (Heule and Verwer 2010) by adding more constraints to reduce the search space. We
use a method which forbids block permutations by using a total order on the set of states. We
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b/0a/0
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Fig. 3 The ω-conjectures generated by Algorithm 2 with the mutation machine in Fig. 2
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chose a total order < over the set of states X, based on which we add the following clauses
excluding permutations.

For each x ∈ X and each i such that 0 ≤ i < n − 1, we have Boolean formulas (translated
trivially into clauses):

vx;0 ¼ 1 and:∨x 0< xvx 0;i⇒:vx;iþ1:

Intuitively, they impose to use the first available block (not yet assigned to states preceding x in
the total order) when state x needs one.

The prototype tool was developed on C++ depending only on the SAT Solver
CryptoMiniSat (Soos 2009), as a back end. All the experiments were performed on a virtual
machine (VirtualBox) with 8 GiB of RAM and one CPU used. The computer has the processor
i7-3770 and 16 GiB of RAM.

8.2 Experiments with randomly generated FSMs

We present experimental results on checking sequence generation using randomly generated
FSMs. The number of inputs as well as outputs are fixed to two, while the number of states is

Table 2 Experimental results for checking sequence generation from random FSMs

n Time in seconds Length of CS ω

Min Max Average Median Min Max Average Median

1 < 0.01 < 0.01 < 0.01 < 0.01 2 2 2.00 2
2 < 0.01 < 0.01 < 0.01 < 0.01 6 10 7.82 8
3 < 0.01 < 0.01 < 0.01 < 0.01 13 23 16.36 16
4 < 0.01 0.01 < 0.01 < 0.01 17 41 26.73 25
5 < 0.01 0.02 0.01 0.01 28 63 40.91 42
6 0.01 0.03 0.02 0.02 30 67 45.27 46
7 0.01 0.50 0.07 0.01 41 103 56.73 50
8 0.01 0.79 0.21 0.08 43 152 77.64 77
9 0.09 9.11 2.28 0.32 73 154 99.09 86
10 0.09 60.33 8.86 1.03 69 224 121.18 109
11 0.16 391.06 87.35 4.61 94 166 124.00 126

Table 3 Experimental results for inference of random FSMs

n Time in seconds Length of CS

Min Max Average Median Min Max Average Median

1 < 0.01 < 0.01 < 0.01 < 0.01 2 2 2 2
2 < 0.01 < 0.01 < 0.01 < 0.01 6 12 8 8
3 < 0.01 < 0.01 < 0.01 < 0.01 12 32 18.45 16
4 < 0.01 0.02 < 0.01 < 0.01 22 51 30.72 27
5 < 0.01 0.03 0.01 < 0.01 32 70 50.09 46
6 < 0.01 0.08 0.01 < 0.01 38 76 53.82 55
7 < 0.01 1.53 0.08 < 0.01 46 98 65.64 60
8 < 0.01 10.90 0.84 < 0.01 60 120 83 75
9 < 0.01 26.49 4.28 1.23 72 153 101.82 103
10 0.23 375.73 26.90 0.01 80 266 123.18 102
11 < 0.01 2563.94 187.29 < 0.01 84 165 130.36 138
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varied. For each state number, 11 complete strongly connected machines are generated; they
are not necessarily minimal, since the approach does not require any state pair distinguish-
ability. Table 2 summarizes the time and length of the obtained checking sequences, and
Table 3 presents the data for the inference of random FSMs.

The experiments indicate that most of the randomly generated machines do not
take much time to generate checking sequences or to be learnt. In our experiments,
the prototype scales reasonably well for up to a dozen of states. This matches the
state-of-the-art in DFA inference, see, e.g., (Oliveira and Silva 2001), where the
authors state that finding solutions up to 11–12 states is possible with the existing
algorithms, but the latter become progressively less effective as the number of states
increases.

To assess the performance of the prototype to the numbers of inputs and outputs, another
series of experiments reported in Table 4 were performed for machines with five states,

Table 4 Experimental results with randomly generated FSMs with five states

#Inputs = #outputs RANDOM FSMs

Checking Inferring

|ω| #Solver Time |ω| #Solver Time

2 37 26 0.01 43 32 0.02
3 51 40 0.03 57 47 0.05
4 68 53 0.04 70 58 0.09
5 74 62 0.05 81 71 0.12
6 88 73 0.07 95 85 0.2
7 101 83 0.09 109 99 0.3
8 113 95 0.12 121 111 0.38
9 121 102 0.12 127 122 0.5
10 138 114 0.18 145 136 0.72
20 257 212 0.63 276 261 3.2
30 377 312 1.3 425 391 10
40 525 412 2.5 517 571 22

Table 5 Experimental results with randomly generated lock FSMs

n RANDOM LOCKs

Checking Inferring

|ω| #Solver Time |ω| #Solver Time

1 2 3 0.01 2 3 0.01
2 7 8 0.01 7 7 0.01
3 22 16 0.01 23 22 0.01
4 57 28 0.04 58 61 0.05
5 110 40 0.41 127 164 0.79
6 255 58 7.8 269 514 21
7 488 456 870 456 2202 970
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keeping the equal number of inputs and outputs. Our experiments by varying the numbers of
their inputs and outputs separately show (we do not present the results of these experiments in
this paper), unsurprisingly, that increasing number of inputs or outputs have opposite effects on
the effectiveness, the more inputs the more complex the solutions (the search space is larger),
but the more outputs the easier the solutions (more outputs increase state pair
distinguishability).

In addition, we performed another series of experiments using randomly generated lock
machines (Table 5). A lock FSM (aka Moore lock, defined by him) with n states has a unique
“unlocking” input sequence of length n which executes the “remotest” transition; the transi-
tions not covered by this sequence all lead to the initial state resetting the lock. We consider
lock machines as an ultimate test for active inference and checking sequence generation
methods. As before for each number of states, we generate 101 random locks with two inputs
and two outputs and collect the same parameters as above. Clearly, for a fixed number of
states, locks differ only in labelling of unlocking sequences, which affects the performance of
the prototype, since it chooses inputs completing and distinguishing conjectures following the
lexicographical order.

It is interesting to notice that active inference and checking sequence construction need
input sequences of comparable lengths. After all, in both cases, a checking sequence for the
same machine is generated.

Table 6 Comparison of the pro-
posed approach with the method
(Petrenko and Simao 2017)

Number of
transitions
in MM

Length of CS obtained
in (Petrenko and Simao
2017)

Length of CS
obtained
with Algorithm 2

10 0 0
20 13 10
30 21 16
40 29 21
50 35 26
60 38 31
70 41 33
80 44 34
90 45 34
100 45 35

Table 7 Checking sequences w.r.t. various mutation machines

Number of transitions
in MM

Time in seconds Length of CS

Min Max Average Median Min Max Average Median

14 < 0.01 < 0.01 < 0.01 < 0.01 0 0 0 0
32 < 0.01 0.01 < 0.01 < 0.01 20 33 24 24
50 < 0.01 0.01 0.01 0.01 22 49 35 34
69 < 0.01 0.02 0.01 0.01 28 65 41 36
87 0.01 0.04 0.02 0.02 34 79 49 44
105 0.02 0.10 0.05 0.04 40 87 56 46
123 0.03 0.46 0.16 0.11 42 93 59 52
141 0.08 3 0.65 0.30 43 91 60 52
160 0.09 16 2.62 0.63 53 98 69 66
178 0.15 54 17.55 7.90 41 123 65 60
196 0.81 76 18.58 6.51 44 96 63 59
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8.3 Experiments with mutation machines

We report the results of two experiments. In the first experiment, we compare the SAT solving
approach with the method proposed in (Petrenko and Simao 2017), the only existing method
for determining a checking sequence w.r.t. a mutation machine.

Table 6 shows how the length of checking sequences obtained with both methods grows
with the number of transitions in mutation machines for randomly generated FSMs with 5
states, 2 inputs, and 2 outputs. The number of the transitions of mutation machines varies from
10 (as in the specification FSM) to 100 (as in the chaos machine with 5 states).

The proposed method yields shorter sequences because it always uses a single sequence to
kill a mutant, but the existing method (Petrenko and Simao 2017) does not guarantee that.

In the second experiment, we use instead of a single example FSM, 101 randomly
generated specification machines with 7 states, two inputs and two outputs. For each of them
a mutation machine with a given number of transitions is randomly generated. The number of
transitions in the specification FSM is 14 and, in the mutation machine, that number reaches
196; hence, the incremental step is an approximated one tenth of 182. Table 7 shows the
median length of checking sequences and time spent to generate them.

Table 8 Experiments with Mealy machines in the Radboud benchmark

Benchmark Checking Inferring

Sec. Length Sec. Length

4_learnresult_SecureCode Aut_fix 1.7 379 4.4 360
ASN_learnresult_SecureCode Aut_fix.dot 1.6 379 4.3 360
learnresult_new_device-simple_fix 0.02 47 0.03 56
learnresult_old_device-simple_fix 0.13 90 0.45 119
emqtt__invalid.dot 0.18 183 24 552
emqtt__simple.dot 0.04 94 5.6 265
hbmqtt__invalid.dot 0.08 116 0.5 149
mosquitto__mosquitto.dot 0.05 94 5.8 265
VerneMQ__simple.dot 0.04 94 5.8 265
lee_yannakakis_distinguishable.dot 0.1 69 0.03 64
lee_yannakakis_non_distinguishable.dot 0.01 17 0.01 20
naiks.dot 0.02 33 0.02 28
ABP_Channel_Frame.flat_0_1.dot 0.36 148 0.7 180
ABP_Receiver.flat_0_1.dot 0.03 64 0.07 81
ABP_Receiver.flat_0_2.dot 0,47 195 5 215
ABP_Receiver.flat_0_3.dot 4.9 372 49 408
river.flat_0_1.dot 0.01 2 0.01 2
river.flat_0_2.dot 0.01 3 0.02 3
river.flat_0_3.dot 1.5 134 2 152
passport.flat_0_1.dot 2.9 308 30 478
passport.flat_0_2.dot 16 451 18 505
passport.flat_0_3.dot 9.9 429 150 903
passport.flat_0_4.dot 6.9 402 88 651
passport.flat_0_5.dot 11 457 – –

passport.flat_0_6.dot 3.5 396 307 900
passport.flat_0_7.dot 11 503 155 1122
passport.flat_0_8.dot 58 675 101 847
passport.flat_0_9.dot 11 564 1143 536
passport.flat_0_10.dot 36 671 926 163
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The experiments indicate that encoding of a mutation machine slows the process when the
number of transitions exceeds one half of the maximum. On the other hand, as the data in
Table 6 indicate, when a mutation machine has fewer transitions, the constraints imposed by it
lead to shorter checking sequences generated in reasonable time, compared to the chaos
mutation machine, i.e., the use of the universe ℑ(n, I, O).

9 Experiments with the Radboud benchmark

We use several Mealy models in the Radboud benchmark specifically set up to collect case
studies of software systems,1 which thus could be viewed as more realistic models than those
randomly generated. Table 8 presents the obtained results for real application benchmarks. One
benchmark has no data for inference, since the tool was unable to terminate within 2000 s.

Some of the considered FSMs are not strongly connected and in such cases, as we
explained above, our approach infers conjectures that cannot be distinguished from black
box machines after the execution of the obtained traces.

It is interesting to note that the considered real application benchmarks require longer input
sequences to build checking sequences than random ones of comparable sizes; nevertheless,
the current implementation of the approach was able to generate sequences of more than 1000
inputs.

The expected complexity of the proposed approach could be estimated by viewing it as a
mutation-based technique which kills mutants. In our approach, at each iteration, only a mutant
surviving a current trace can be generated and then killed, drastically reducing the complexity
of mutation-based techniques. A naive worst-case estimation based on number of (potential)
mutants would be grossly overestimated. The complexity of a SAT problem can be estimated
as follows. Given the number of states n and the length of a current trace N, there could be
O(N2) variables and O(nN2) clauses. We observe in our experiments with random as well real
application benchmarks that the length of resulting sequences grows polynomially, the number
of times the solver is called linearly and time exponentially with the number of states.

10 Conclusions

We have presented an approach that can build a checking sequence for an arbitrary FSM
without checking whether or not it has a distinguishing sequence. It can also infer a model of a
nonresettable black box FSM for which we only know an upper bound on the number of
states. It produces the model along with the input sequence that was used for inferring it. The
algorithm terminates on a final model that is equivalent to the black box FSM up to
initialization, and since it identifies a unique machine, the resulting input sequence is a
checking sequence for this FSM. The problems of inference and checking sequence are solved
with the same approach, demonstrating that both problems are two sides of the same coin.

The main benefit of this approach is that it only requires a bound on the number of states,
no other assumption is needed, and the system does not have to be reset. This implies that it
may have a wide spectrum of applications. The performance of active inference methods is
usually assessed through the number of interactions with a system that are needed to infer it.

1 http://automata.cs.ru.nl/Overview#Mealybenchmarks
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Experiments have shown that the length of the input sequence implied by our approach is quite
good. Another issue comes from the internal computations needed by the inference algorithm
to build the model of the system. The method relies on a SAT solver to propose conjecture
FSMs that are consistent with an observed trace. Unfortunately, this induces computational
blow up and is the limiting factor in our experiments. However, being able to infer state
machines of up to a dozen states is in itself interesting for a large range of applications (many
systems have relatively small state space for the control part of their computations). We also
demonstrate that the length of experiments used in inference and checking sequence generation
could be reduced by constraining the problem with mutation machines modelling a subset of
all possible FSMs which form the search space and serves as a means to control the size of the
resulting experiments.

Our final remark is that the proposed SAT solving approach is formulated for the case of
nonresettable FSMs. We focused on this class of machines since checking sequence construc-
tion and active inference for them was an open problem. However, the approach can easily be
reformulated for the resettable FSMs, generating checking experiments instead of checking
sequences and inferring a machine using a set of input sequences interleaved with reset.

The approach seems promising and our current work is focused on its further improvement.
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