

Exhibition of a Structural Bug with Wings

Florent Avellaneda joint work with Rémi Morin

Laboratoire d'Informatique Fondamentale de Marseille, AMU & CNRS, UMR 7279

27 June 2014

Florent Avellaneda

Exhibition of a Structural Bug with Wings

27 June 2014 1 / 22

2 Representation of pathological cycles

3 Searching for minimal counter-examples

3

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Representation of pathological cycles

Searching for minimal counter-examples

э

(日) (同) (目) (日)

Definition

A vector addition system with states (VASS) is a directed graph $G = (Q, A, \mu)$ with :

- Q a finite set of nodes,
- $A \subseteq Q \times \mathbb{Z}^d \times Q$ a finite set of arcs labeled by integral vectors,

Definition

A vector addition system with states (VASS) is a directed graph $G = (Q, A, \mu)$ with :

- Q a finite set of nodes,
- $A \subseteq Q \times \mathbb{Z}^d \times Q$ a finite set of arcs labeled by integral vectors,

Definition

A vector addition system with states (VASS) is a directed graph $G = (Q, A, \mu)$ with :

- Q a finite set of nodes,
- $A \subseteq Q \times \mathbb{Z}^d \times Q$ a finite set of arcs labeled by integral vectors,

Definition

A vector addition system with states (VASS) is a directed graph $G = (Q, A, \mu)$ with :

- Q a finite set of nodes,
- $A \subseteq Q \times \mathbb{Z}^d \times Q$ a finite set of arcs labeled by integral vectors,

Definition

A vector addition system with states (VASS) is a directed graph $G = (Q, A, \mu)$ with :

- Q a finite set of nodes,
- $A \subseteq Q \times \mathbb{Z}^d \times Q$ a finite set of arcs labeled by integral vectors,

Definition

A vector addition system with states (VASS) is a directed graph $G = (Q, A, \mu)$ with :

- Q a finite set of nodes,
- $A \subseteq Q \times \mathbb{Z}^d \times Q$ a finite set of arcs labeled by integral vectors,

Definition

A vector addition system with states (VASS) is a directed graph $G = (Q, A, \mu)$ with :

- Q a finite set of nodes,
- $A \subseteq Q \times \mathbb{Z}^d \times Q$ a finite set of arcs labeled by integral vectors,

Definition

A vector addition system with states (VASS) is a directed graph $G = (Q, A, \mu)$ with :

- Q a finite set of nodes,
- $A \subseteq Q \times \mathbb{Z}^d \times Q$ a finite set of arcs labeled by integral vectors,

Definition

A vector addition system with states (VASS) is a directed graph $G = (Q, A, \mu)$ with :

- Q a finite set of nodes,
- $A \subseteq Q \times \mathbb{Z}^d \times Q$ a finite set of arcs labeled by integral vectors,

Definition

A vector addition system with states (VASS) is a directed graph $G = (Q, A, \mu)$ with :

- Q a finite set of nodes,
- $A \subseteq Q \times \mathbb{Z}^d \times Q$ a finite set of arcs labeled by integral vectors,

We study two structural properties :

• Structural boundedness :

for each initial configuration, the VASS is bounded.

• Structural termination :

for each initial configuration, the VASS terminates.

Motivation :

Boundedness and termination are EXPSPACE-complete problems while structural boundedness and structural termination are polynomial.

Warning

The usual simulation of a VASS by a Petri net does not preserve these properties.

(a) A VASS

(b) The "equivalent" Petri net

Remark

A VASS is structurally bounded if and only if there exists no cycle whose cost is $\gtrsim \vec{0}.$

Remark

A VASS is structurally terminating if and only if there exists no cycle whose cost is $\geq \vec{0}.$

These problems are solvable in polynomial time by linear programs and computing connected components [Kosaraju and Sullivan, STOC'88].

The resulting algorithm returns in polynomial time a multiset of arcs H that represents a pathological cycle if such a cycle exists.

The user of a formal verification tool usually expects to get a simple counter example when the property is not satisfied.

Difficulty : the minimum length of a "pathological" cycle is potentially exponential.

n times

Aim : Concise representation of pathological cycles for VASS.

・ロト ・雪ト ・ヨト ・ヨト

2 Representation of pathological cycles

Searching for minimal counter-examples

Florent Avellaneda

Exhibition of a Structural Bug with Wings

3

(日) (周) (日) (日)

How can we decompose a pathological cycle?

< 47 > < 3

What is a wing?

Definition

A wing with valuation k starting from a node q corresponds to a cycle made of three components :

- A path from the node q to a node q'.
- A cycle over q' iterated k times.
- A path from q' to q.

Let $H \in \mathbb{N}^A$ be a multiset of arcs corresponding to a cycle and $q_{in} \in Q_H$. We can compute in polynomial time a finite multiset of wings \mathscr{F} such that :

• each wing starts from q_{in},

•
$$cost(\mathscr{F}) = m \cdot cost(H)$$
 for some $m \in \mathbb{N}^*$.

- Each component of each wing is simple,
- \mathscr{F} contains at most d distinct wings.

$$H = a_1 + 5l_1 + a_2 + 3l_2 + a_3$$

Let $H \in \mathbb{N}^A$ be a multiset of arcs corresponding to a cycle and $q_{in} \in Q_H$. We can compute in polynomial time a finite multiset of wings \mathscr{F} such that :

• each wing starts from q_{in},

•
$$cost(\mathscr{F}) = m \cdot cost(H)$$
 for some $m \in \mathbb{N}^*$.

- Each component of each wing is simple,
- \mathscr{F} contains at most d distinct wings.

$$H = a_1 + 5l_1 + a_2 + 3l_2 + a_3$$
$$W_1 = a_1 + 10l_1 + a_2 + a_3$$

Let $H \in \mathbb{N}^A$ be a multiset of arcs corresponding to a cycle and $q_{in} \in Q_H$. We can compute in polynomial time a finite multiset of wings \mathscr{F} such that :

• each wing starts from q_{in},

•
$$cost(\mathscr{F}) = m \cdot cost(H)$$
 for some $m \in \mathbb{N}^*$.

- Each component of each wing is simple,
- \mathscr{F} contains at most d distinct wings.

$$H = a_1 + 5l_1 + a_2 + 3l_2 + a_3$$
$$W_1 = a_1 + 10l_1 + a_2 + a_3$$
$$W_2 = a_1 + a_2 + 6l_2 + a_3$$

Let $H \in \mathbb{N}^A$ be a multiset of arcs corresponding to a cycle and $q_{in} \in Q_H$. We can compute in polynomial time a finite multiset of wings \mathscr{F} such that :

• each wing starts from q_{in},

•
$$cost(\mathscr{F}) = m \cdot cost(H)$$
 for some $m \in \mathbb{N}^*$.

- Each component of each wing is simple,
- \mathscr{F} contains at most d distinct wings.

$$H = a_1 + 5l_1 + a_2 + 3l_2 + a_3$$

$$W_1 = a_1 + 10l_1 + a_2 + a_3$$

$$W_2 = a_1 + a_2 + 6l_2 + a_3$$

$$\mathscr{F} = W_1 + W_2$$

$$cost(\mathscr{F}) = 2 \cdot cost(H)$$

Definition

Let $H \in \mathbb{N}^A$ be a non-empty multiset of arcs and $q_{in} \in Q_H$. Let *C* be a simple cycle within *H* and $k = max_{a \in C}H(a)$. Then *C* is **adequate** for *H* and q_{in} if it satisfies the two next conditions :

- the multiset of arcs $H k \cdot C$ is connected;
- if $H k \cdot C$ is not empty then $Q_{H-k \cdot C}$ contains q_{in} .

Key lemma

For each H, we can compute in polynomial time an adequate cycle in H.

(김희) 김 국가 김 국가 영화

3

3

Florent Avellaneda

Exhibition of a Structural Bug with Wings

 $\exists \rightarrow b$ 27 June 2014 14 / 22

3

$$\mathscr{F} = k_1 \cdot W_1$$

Florent Avellaneda

Exhibition of a Structural Bug with Wings

27 June 2014 14 / 22

3

$$\mathscr{F} = k_1 \cdot W_1$$

Florent Avellaneda

Exhibition of a Structural Bug with Wings

3

$$\mathscr{F} = 3 \cdot k_1 \cdot W_1 + k_2 \cdot W_2$$

Florent Avellaneda

Exhibition of a Structural Bug with Wings

27 June 2014 14 / 22

3

$$\mathscr{F} = 9 \cdot k_1 \cdot W_1 + 3 \cdot k_2 \cdot W_2 + k_3 \cdot W_3$$

Florent Avellaneda

Exhibition of a Structural Bug with Wings

27 June 2014 14 / 22

3

$\mathscr{F} = 27 \cdot k_1 \cdot W_1 + 9 \cdot k_2 \cdot W_2 + 3 \cdot k_3 \cdot W_3 + k_4 \cdot W_4$

Florent Avellaneda

Exhibition of a Structural Bug with Wings

27 June 2014 14 / 22

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$\mathscr{F} = 81 \cdot k_1 \cdot W_1 + 27 \cdot k_2 \cdot W_2 + 9 \cdot k_3 \cdot W_3 + 3 \cdot k_4 \cdot W_4 + k_5 \cdot W_5$

Florent Avellaneda

Exhibition of a Structural Bug with Wings

27 June 2014 14 / 22

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへぐ

$\mathscr{F} = 243 \cdot k_1 \cdot W_1 + 81 \cdot k_2 \cdot W_2 + 27 \cdot k_3 \cdot W_3 + 9 \cdot k_4 \cdot W_4 + 3 \cdot k_5 \cdot W_5 + k_6 \cdot W_6$

Florent Avellaneda

Exhibition of a Structural Bug with Wings

27 June 2014 14 / 22

$\mathscr{F} = 243 \cdot k_1 \cdot W_1 + 81 \cdot k_2 \cdot W_2 + 27 \cdot k_3 \cdot W_3 + 9 \cdot k_4 \cdot W_4 + 3 \cdot k_5 \cdot W_5 + k_6 \cdot W_6$

By Carathéodory's theorem, we can reduce \mathscr{F} to d wings.

Florent Avellaneda

Exhibition of a Structural Bug with Wings

▲□▶ ▲□▶ ▲□▶ ▲□▶ = うのの

Representation of pathological cycles

3 Searching for minimal counter-examples

Florent Avellaneda

Exhibition of a Structural Bug with Wings

3

< □ > < □ > < □ > < □ > < □ > < □ >

The following problems are NP-hard :

- Minimizing the length of pathological cycles.
- Minimizing the number of distinct arcs in pathological cycles.
- Minimizing the number of dimensions in pathological cycles.
- Minimizing the maximum number of times each arc is used.

However,

Second result

Minimizing the length of wings can be done in polynomial time.

Lemma

Let \mathscr{F} be a multiset of wings starting from q with length at most l such that $cost(\mathscr{F}) \geq \vec{0}$. Let $\phi = 96 \times p^4 \times size(S)$. Then there exists a non-empty finite multiset \mathscr{F}' of wings starting from q with length at most l and valuation at most 2^{ϕ} such that $cost(\mathscr{F}') \geq \vec{0}$.

Hint : Write an integer linear program whose variables correspond to the valuation of wings.

Remarks : We can restrict the search to wings with length at most I and valuation at most 2^{ϕ} . The number of these wings is finite.

Let $W_1, ..., W_N$ be an enumeration of these wings.

We consider the linear program for a vector $x \in \mathbb{Q}^N$ with N unknown :

$$\Sigma_{i=1}^{N} x[i] \cdot cost(W_i) \geq \vec{0} ext{ with } x \in \mathbb{Q}^N$$

 $x \gtrless \vec{0}$

Remark : The number of unknown is exponential.

=> We consider the dual problem.

Let $W_1, ..., W_N$ be an enumeration of wings starting from q with length at most l and valuation at most 2^{ϕ} .

We consider the linear program for a vector $y \in \mathbb{Q}^p$ with p unknown :

y[i] > 0, for $i \in [1..p]$ $-cost(W_i)^\top y > 0$, for $i \in [1..N]$

By Gordan Theorem, the linear program has no solution if and only if there exists some non-negative non-zero linear combination of its row vectors that sums to a non-negative vector.

Remarks :

- The number of unknown is linear.
- The number of inequalities is exponential.

We use the ellipsoid method [Grötschel, Lovász, Schrijver'81].

Florent Avellaneda

Theorem [Grötschel, Lovász, Schrijver'81]

We can solve a linear program with arbitrary number of constraints in polynomial time if we have a polynomial separation algorithm.

Idea of the separation algorithm :

- If $y \not\ge \vec{0}$, return some $i \in [1..p]$ such that $y[i] \le 0$.
- For all q, q' ∈ Q, we calculate the maximal weight of the paths from q to q' with length at most l.
 - \Rightarrow We calculate the wing with the maximum weight.

y[i] > 0, for $i \in [1..p]$ $-cost(W_i)^\top y > 0$, for $i \in [1..N]$

Florent Avellaneda

Exhibition of a Structural Bug with Wings

27 June 2014 20 / 22

▲□▶ ▲□▶ ▲□▶ ▲□▶ = うのの

- We are interested in structural properties of VASS because they are useful in practice.
- We can detect and represent a structural bug by a multiset of *d* wings in polynomial time.
- We can minimizing the length of these wings in polynomial time.

Thanks.

Florent Avellaneda

Exhibition of a Structural Bug with Wings

27 June 2014

イロト イヨト イヨト イヨト

22 / 22

Ξ.