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DynAMICS: A tool-based method for the
specification and dynamic detection of Android

behavioural code smells
Dimitri Prestat, Naouel Moha, Roger Villemaire and Florent Avellaneda

Abstract—Code smells are the result of poor design choices within software systems that complexify source code and impede
evolution and performance. Therefore, detecting code smells within software systems is an important priority to decrease technical
debt. Furthermore, the emergence of mobile applications (apps) has brought new types of Android-specific code smells, which relate to
limitations and constraints on resources like memory, performance and energy consumption. Among these Android-specific smells are
those that describe inappropriate behaviour during the execution that may negatively impact software quality. Static analysis tools,
however, show limitations for detecting these behavioural code smells and properly detecting behavioural code smells requires
considering the dynamic behaviour of the apps. To dynamically detect behavioural code smells, we hence propose three contributions :
(1) A method, the DYNAMICS method, a step-by-step method for the specification and dynamic detection of Android behavioural code
smells; (2) A tool, the DYNAMICS tool, implementing this method on seven code smells; and (3) A validation of our approach on 538
apps from F-DROID with a comparison with the static analysis detection tools, ADOCTOR and PAPRIKA, from the literature. Our method
consists of four steps: (1) the specification of the code smells, (2) the instrumentation of the app, (3) the execution of the apps, and (4)
the detection of the behavioural code smells. Our results show that many instances of code smells that cannot be detected with static
detection tools are indeed detected with our dynamic approach with an average precision of 92.8% and an average recall of 53.4%.

Index Terms—Android, code smells, detection, dynamic analysis, instrumentation, mobile apps, apps, behavioural
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1 INTRODUCTION

IN the last decades, the mobile apps market has grown
tremendously and mobile apps have morphed from sim-

ple applications to rapidly evolving complex systems. For
instance, in 2021 there were more than five million apps
available in various app stores [1], with more than 230
billion downloads in 2021 [2]. Furthermore, to meet this
increasing demand, mobile apps are developed at a rapid
pace and are constantly evolving to meet new user require-
ments. However, these quick developments to solve bugs or
add missing features in a constrained time frame may lead
to poor design or implementation choices, also called code
smells [3], which reinforce the technical debt.

Even if these mobile apps are mostly developed with
Object-Oriented (OO) languages and many questions on OO
code smells have already been addressed in the literature [4]
[5], mobile apps bring new concerns, such as energy con-
sumption, limited memory and limited performance. Due
to these new concerns, the research community introduced
new Android-specific code smells, describing them carefully to
detect and correct them [3] [6] [7].

Some of these Android-specific code smells are consid-
ered as behavioural code smells. By defining a behaviour as
a sequence of observable code events during execution, we
define a behavioural code smell as source code characteristics
inducing an inappropriate behaviour that may negatively
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impact software quality in terms of performance, energy
consumption, memory. Here the source code characteristics
refer to specific method calls/declarations or usage of spe-
cific code structures.

For example, the code smell Durable WakeLock (DW)
manifests itself when the lock of a WakeLock is not released,
causing battery drain. The WakeLock is the mechanism al-
lowing an app to keep the device on. The DW code smell,
therefore, describes the following inappropriate behaviour:
A call to the acquire method is not followed by a call to the
release method. In this case, the source code characteristics
are the invocations of the acquire and release methods of the
WakeLock class. While a static approach can be used to verify
the presence of these two methods in the code, it does not
allow to verify the behavioural aspect of the code smell.
Indeed, it would be quite challenging to statically check that
the two methods are called in the right order.

We have recently conducted an empirical study [8] on
the effectiveness of Android behavioural code smells de-
tection by the tools available in the literature, particularly
ADOCTOR [7] and PAPRIKA [6]. That study shows that these
static code smells detection tools show limitations in detect-
ing behavioural code smells. The study, also argues that a
dynamic approach could be a solution for the detection of
behavioural code smells and urges the research community
to introduce such tools.

In fact, we identify three behavioural code smells cat-
egories. The first one is characterised by the misuse of
a method call or a sequence of method calls during the
execution. The second is characterised by runtime issues,
such as a long execution time of a method or an excessive
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use of the memory. Finally, the third is characterised by
undesired data variations during execution, such as the size
of a structure becoming excessively large. Each behavioural
code smell belonging to these categories requires specific
information that can be retrieved while the application is
running [8]. A detection using dynamic analysis can easily
provide these runtime information, unlike static analysis,
which requires the static detection rules to be adapted to
overcome the need of those runtime information.

This paper presents three contributions to address the
lack of dynamic approaches for detecting behavioural code
smells. First, we propose a method that contains all the
necessary steps for the specification and detection of be-
havioural code smells. This is a major contribution, as all
state-of-the-art works on Android code smells detection are
solely static.

Second, we implement our method through a tool,
named DYNAMICS (DYNamically Analysis of Mobile Instru-
mented Code Smells). DYNAMICS makes it possible to carry
out all the steps automatically. DYNAMICS allows detecting
code smells directly from the APK of an app. To accomplish
this, from the code smells specification, our tool instruments
the app, executes it to produce a trace and then detects the
code smells according to this trace. As a result, DYNAMICS
is a tool that allows the app’s behaviour to be considered to
ensure a more accurate detection of behavioural code smells.

Third, we validate DYNAMICS using precision and recall
on an open-source dataset of 538 apps from F-DROID. More-
over, we compare it to two static analysis tools, ADOCTOR
and PAPRIKA, for the detection of behavioural code smells
from the literature. Our results show the effectiveness of
our method for the detection of behavioural code smell, by
pointing out that many instances of code smells that cannot
be detected with static approaches are indeed detected with
our tool.

This paper is organised as follows. Section 2 gives a
background on behavioural code smells. Section 3 discusses
the related work. Section 4 presents our method to detect
behavioural code smells. DYNAMICS is presented in Section
5. The validation and the results of DYNAMICS are presented
in Section 6. We conclude the paper in Section 7.

2 BEHAVIOURAL CODE SMELLS

Code smells have been initially introduced by Fowler [3]
and Brown et al. [9], who describe them as symptoms of
poor design or implementation choices made by developers
during the development of a software system [3]. As the
name indicates, these symptoms are sniffable, i.e. easily
detectable in a static way. However, code smells identified
in the literature can be challenging to ascertain, particularly
for Android code smells. Nonetheless, we propose to focus
on behavioural code smells in mobile apps for two main
reasons. First, these code smells may hinder the software
quality of mobile apps, specifically in terms of energy
consumption, memory and performance. Secondly, existing
research has not specifically addressed their detection.

We now present the seven code smells implemented in
our tool. We follow the definitions given by [6], [7] and [10].

Durable WakeLock (DW): A WakeLock is the mechanism
allowing an app to keep the device on in order to complete
a task. However, when such task is completed, the lock
should be released to reduce battery drain [11]. In Android,
the class PowerManager.WakeLock is in charge of defining the
methods to acquire and release the lock. If a method using
an instance of the class WakeLock acquires the lock without
calling the release, a smell is identified.
Code Characteristics: The call to the acquire and release
methods of the WakeLock class.
Inappropriate Behaviour: A call to the acquire method is
not followed by the call of the release method.

HashMap Usage (HMU): The Android framework
provides ArrayMap and SimpleArrayMap as replacements
from traditional Java HashMap. They are intended to be
more memory-efficient and to trigger less garbage collection
with no significant difference on operations performance
for maps containing up to hundreds of values [12]. So,
unless a complex map for a large set of objects is required,
the use of ArrayMap should be preferred over the usage
of HashMap in Android apps. Therefore, creating small
HashMap instances is considered as a code smell [12], [13].
Code Characteristics: The call to a method from the
HashMap / ArrayMap / SimpleArrayMap classes.
Inappropriate Behaviour: A HashMap structure is used
for a small set of objects or ArrayMap / SimpleArrayMap
structures are used for a large set of objects.

Heavy AsyncTask (HAS): In Android, the AsyncTask API
allows developers to perform short background operations.
However, three out of the four steps of AsyncTask are
executed on the main UI thread and not in the background.
Thus, these steps should not be time-consuming or
use blocking operations to avoid: i) the GUI becoming
unresponsive to user interactions or ii) the ANR dialog
being shown. Thus, a class extending AsyncTask should
never contain time-consuming or blocking onPostExecute,
onPreExecute, or onProgressUpdate methods [14].
Code Characteristics: The implementation of onPostExecute
/ onPreExecute / onProgressUpdate methods within an
AsyncTask class.
Inappropriate Behaviour: The onPostExecute / onPreExecute
/ onProgressUpdate methods are time-consuming or
blocking.

Heavy BroadcastReceiver (HBR): Android apps can use
a broadcast receiver to manage broadcast communications
with the system or other apps. However, the onReceive
method of BroadcastReceiver runs in the main UI thread.
Thus, if this method contains time-consuming or blocking
operations, it may also cause the app to freeze or to show
an ANR dialog [15].
Code Characteristics: The implementation of the onReceive
method within a BroadcastReceiver class.
Inappropriate Behaviour: The onReceive method is time-
consuming or blocking.

Heavy Service Start (HSS): Services in Android can
perform heavy operations in background. However,
Android services run in the main thread of their hosting
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process. By default, the service execution starts with a call
to the OnStartCommand of the service, which runs in the
main UI thread. Thus, the OnStartCommand should never
contain time-consuming operations, otherwise, it may cause
the app to freeze or to display an ANR (Application Not
Responding) dialog [16]. Instead, when the service executes
time-consuming or asynchronous operations, a new thread
should be created by the method OnStartCommand to
handle these operations outside the main UI thread.
Code Characteristics: The implementation of the
onStartCommand method within a Service class.
Inappropriate Behaviour: The onStartCommand method is
time-consuming or blocking.

Init OnDraw (IOD): OnDraw routines are responsible
for updating the GUI of Android apps. These routines are
invoked each time the GUI is refreshed (up to 60 times
per second), and thus any extra computational work done
in OnDraw is magnified by that frequency. Moreover, a
high rate of memory allocations may lead to high memory
consumption and numerous calls to garbage collection
activities [17]. Thus, ideally, OnDraw routines should never
contain init instructions to allocate memory (either new or
calls to factory/constructor).
Code Characteristics: The implementation of the onDraw
method within a View class.
Inappropriate Behaviour: The onDraw method is time-
consuming or initialises objects.

No Low Memory Resolver (NLMR): When the Android
system is running low on memory, the system calls the
method onLowMemory of every running activity. This
method is responsible for trimming the memory usage
of the activity. If this method is not implemented by
the activity, the Android system automatically kills the
process of the activity to free memory. This may lead to an
unexpected program termination. It is assumed that when
the method onLowMemory is declared, it has to contain an
event about the memory. This method is now deprecated
and has been replaced by the onTrimMemory method [18]
that allows to incrementally unload resources based on a
parameter indicating the amount of trimming the app may
like to perform. However, onLowMemory is still frequently
used, for instance in our dataset, and this code smell
has hence been retained for our tool. Furthermore, the
detection method that we use can as well be applied with
onTrimMemory and our tool could readily be extended to
this method.
Code Characteristics: The implementation of the
onLowMemory method within an Activity class.
Inappropriate Behaviour: The onLowMemory method does
not reclaim memory when executed.

3 STATE OF THE ART

In this paper, we address (1) the “Detection of Code Smells”
in (2) “Mobile Apps” using (3) “Dynamic Analysis”. Since
to the best of our knowledge, no work has been done on
these three aspects simultaneously, we present related work
that considers two of these three aspects.

3.1 “Detection of Code Smells” in “Mobile Apps”

Reimann et al. [11] propose a catalogue of 30 quality smells
dedicated to Android. These code smells originate mainly
from the good and bad practices documented online in
Android documentation or by developers reporting their
experience on blogs. These code smells concern various
aspects like implementation, user interfaces or database
usage. These code smells are reported to have a negative
impact on properties, such as efficiency, user experience or
security. Two (DW and NLMR) of our studied code smells
come from this catalogue.

Security smells [19] are another category of smells fo-
cused on the vulnerabilities in mobile apps. Ghafari et al.
[19] identify 28 smells whose presence may indicate a secu-
rity issue in a mobile app. These authors also developed a
static analysis tool to study the prevalence of security smells.
However, these code smells are not behavioural, as they con-
cern the mere presence of an attribute in the manifest or the
mere presence of a method call in the code independently
of any induced inappropriate code behaviour.

Several tools are also available to detect Android code
smells, and Rasool et al. [20] give a good overview of
existing tools that can identify Android-specific code smells.
For instance, Rasool et al. [20] own approach is able to
recover 25 Android code smells by source code analysis
and the computation of source code metrics. EARMO [21]
furthermore reports an approach able to detect and correct
code smells related to energy consumption within mobile
apps. This approach, when used to correct these smells, is
able to extend the battery life considerably. Multi-Objective
Genetic Programming has also been used to detect Android
smells [22]. This approach generates rules, which consist of
a combination of quality metrics with threshold values to
detect code smells. This method, therefore, takes as input a
set of Android-specific code smell examples and finds the
best set of rules to cover most of the expected Android code
smells.

However, of the 19 different tools reported by Rasool
et al. [20], if one removes those that are not available (pro-
totypes, commercial or private tools), and those addressing
non-behavioural code smells, all those that remain are exten-
sions of ADOCTOR [7] or PAPRIKA [6]. These two tools are
therefore of prominent importance in Android behavioural
code smells detection.

ADOCTOR [7] is a lightweight detection tool able to
identify 15 Android-specific code smells. PAPRIKA [6] is also
a detection tool able to identify 17 Android code smells.
Both ADOCTOR and PAPRIKA are static analysis tools, and
while ADOCTOR operates on the source code, PAPRIKA
processes the byte code. Iannone et al. [23] proposed a new
version of ADOCTOR, which helps developers refactor the
smells automatically. This extended version is open-source
and available in Android Studio as a plugin published in
the official store. SNIFFER [24] is an open-source toolkit
that tracks the full history of Android-specific code smells.
However, SNIFFER is not another detection tool because
it relies on PAPRIKA to detect Android code smells. In
SNIFFER, PAPRIKA has been slightly modified to be able to
analyse the source code directly instead of the byte code.
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3.2 “Dynamic Analysis” used in “Mobile Apps”
Dynamic analysis of mobile apps has been used numerous
times in related work. Usually, dynamic analysis is used
to inspect the behaviour of malicious apps in order to
detect malwares. For instance, ANDLANTIS [25], a highly
scalable system capable of analysing 3,000 apps per hour
dynamically, shows that it is possible to consider large-scale
dynamic analysis to evaluate runtime behaviour and
network traffic. Furthermore, DROIDTRACE [26] is a tool to
study the malicious behaviour of malware. It uses PTRACE
(Process Trace), a system call to observe and control the
execution of another process. DROIDTRACE is in particular
able to perform forward execution to trigger different
dynamic loading behaviour. DROIDTRACE shares some
similarities with the approach used in this paper in that
both tools trace calls that occur during execution. However,
DROIDTRACE is restricted to the dynamic load of libraries,
while we consider any call that may be of interest for the
considered code smell.

3.3 “Detection of code smells” via “Dynamic Analysis”
Although there is no literature on dynamic Android code
smells detection as far as we know, there is some literature
on the detection of code smells via dynamic analysis. For
instance, JSNOSE [27] detects JavaScript code smells using
dynamic analysis. However, the detection of code smells is
done according to the values of software metrics and the
dynamic aspects do not concern the behaviour of the app,
but rather the computation of metrics and code coverage.
The Feature Envy code smell, an OO code smell, has also
been detected with a dynamic approach [28]. As in this
paper, the Java code is instrumented and the program’s
behaviour is then analysed during the execution. The paper
also mentions that dynamic analysis could be advantageous
for the detection of other types of code smells, however,
detection is only performed on a single object-oriented code
smell. Another difference with our approach is that that
paper uses Aspect Oriented Programming to instrument the
source code, while our approach instruments the bytecode
(APK) and do not necessitate the mobile app’s source code.

Much research has focused on the detection of code
smells in mobile apps and on dynamic analysis of mobile
apps, which demonstrates the interest in these topics by
the community. Few works exist on the detection of code
smells via dynamic analysis, which shows that there are
still many open research questions. However, there is a lack
of approaches and tools to detect code smells, particularly
behavioural code smells, using dynamic analysis in mobile
apps. This, therefore, demonstrates the interest in the con-
tributions of our paper to the state of the art.

4 DYNAMICS METHOD AND DYNAMICS TOOL

Various previous works show that many code smells can
be detected by static analysis, including behavioural code
smells. However, we will show that considering the be-
haviour of the app through dynamic analysis, these be-
havioural code smells can in fact be detected more accu-
rately.

As a first contribution, we propose a method, the DY-
NAMICS method, covering all the essential steps, inputs and
outputs for behavioural code smells detection considering
the behaviour of the app. Our method is based on the four
sequential steps depicted in Figure 1: Specification, Process-
ing, Execution and Detection. The steps are summarised as
follows:

• Step 1. Specification: For each code smell we deter-
mine, from its text-based description, the associated
events and property. In this context, an event is a spe-
cific instruction or method call associated with the
behaviour of the code smell. A property is a condition
on events that determines, when it is satisfied, the
presence of the code smell. Behavioural code smells
are therefore represented by a series of properties on
events that describe inappropriate behaviours of the
mobile app. We, therefore, associate each code smell
with a property to be checked such that as soon as
this property is verified the code smell is detected.

• Step 2. Processing: The events associated to code
smells specified in the first step are located within
the app to enable them to be traced and used in
subsequent steps.

• Step 3. Execution: The app containing the located
events is executed according to scenarios and all
encountered events are logged. Alternatively, it could
also be possible to simulate the app’s behaviour
instead of concretely executing it.

• Step 4. Detection: The detection of behavioural code
smells is performed by analysing the sequence of
events encountered during execution. Code smells
whose associated property is satisfied will be de-
tected.

The first step is performed once on all code smells,
while the remaining steps must be reiterated for each new
considered app.

As a second contribution, we have concretely imple-
mented the DYNAMICS method in a tool, called the DY-
NAMICS tool. Figure 1 presents an overview of the four
steps of the DYNAMICS tool: Specification, Instrumentation,
Execution, Detection. Those steps are instances of the steps of
the DYNAMICS method. It also emphasises the steps, inputs,
and outputs specific to the DYNAMICS tool. The following
items summarise the steps in the DYNAMICS tool:

• Step 1. Specification: As detailed in the DYNAMICS
method, we define for each code smell a set of associ-
ated events and property. The events associated with
a code smell represent source code characteristics
that allow identifying this code smell in the APK.
We, furthermore, express the properties as formal
Linear-time Temporal Logic (LTL) properties whose
satisfaction allows the code smell’s detection.

• Step 2. Instrumentation: For each code smell, we
identify the source code characteristics represented
by the associated events present in the APK. For
each of these events, we instrument the app to insert
instructions into the APK to generate specific log
entries. This step was developed using the SOOT
framework [29].
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Fig. 1. Processes of DYNAMICS Method and DYNAMICS Tool. Boxes represent steps, arrows connect the inputs and outputs of each step described
by dotted boxes. White boxes represent manual steps and filled boxes represent fully-automated steps.

• Step 3. Execution: We run the instrumented app
automatically by emulation using input generators
to monitor its events. As the events are encountered,
multiple log entries are produced, and collectively
these log entries form a trace. This step was devel-
oped using three input generators: MONKEYRUN-
NER [30], DROIDBOT [31] and DROIDBOTX [32]. An
input generator is a program that simulates user
interaction by generating the app’s inputs.

• Step 4. Detection: From the complete trace repre-
senting all the events encountered in their precise
order, we check if the LTL properties are satisfied
or not. Each satisfied property leads to the detection
of a code smell. This step was developed using
the BEEPBEEP3 framework [33], a stream processing
engine that allows the processing of log data.

The DYNAMICS tool, therefore, conducts an offline
analysis on the generated traces since the analysis is
done once the execution is completed. An online analysis
might have been considered where the detection is done
during the execution. However, this choice of an offline
analysis was made to interfere as little as possible with the
execution of the app and to reduce as much as possible the
performance and memory footprint. This is of paramount
importance since we consider some runtime and memory-
related code smells.

5 THE DYNAMICS TOOL IN DETAILS

In the following, the four steps of the DYNAMICS tool are
described using a common pattern: inputs, outputs, de-
scription, and implementation. The steps are, furthermore,
illustrated by a running example using the DW code smell.

5.1 Step 1: Specification
Inputs: Text-based descriptions of mobile code smells from
the literature.
Outputs: The events and the LTL property associated to
each code smell. An event is a specific instruction or method
call associated with the behaviour of the code smell. The
property is a condition on events that determines, when it is
satisfied, the presence of the code smell.

Description: We identify the events associated with code
smells directly from the code smell’s description. Based on
these events, we specify the properties associated with code
smells.

Each event is described by source code characteristics
(specific method calls/declarations or usage of specific code
structures (see Table 1)). Associated values are attached to
an event depending on source code characteristics. These
values can be timestamps, memory metrics or Java ID of
objects and structures (see Table 1).

We define the properties using the Linear-time tempo-
ral logic LTL, a logic devised for expressing conditions
on sequences. In our case, the sequences are those of the
events associated with the code smell that appear in the
execution trace. In a nutshell, LTL is a propositional, modal
temporal logic first developed for the verification of reac-
tive systems [34]. It augments propositional logic with the
modalities F (eventually), G(always), X(next) and U (until)
in support of expressing statements such as “A structure
will always be small” or “A method will eventually be called”.
Such statements can be combined by means of logical con-
nectors and nesting of modal operators to provide more in-
volved properties. The syntax is natural and straightforward
and, as a formal language, it has well-defined semantics and
is therefore unambiguously interpretable.
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TABLE 1
List of the events associated with code smells.

Code Smell Events Source Code Characteristics Values Property

DW
Acquire WakeLock.acquire() WakeLock ID Formula for a WakeLock of ID x:

F (acquire(x)∧
¬ (X (¬acquire(x) U release(x))))

Release WakeLock.release() WakeLock ID

HMU

Instantiation map = new HashMap
map = new ArrayMap
map = new SimpleArrayMap

Structure ID
Size
Type

Formula for a map of ID x:
F ((type(x) = SimpleArrayMap
∨type(x) = ArrayMap) ∧ size(x) ≥ 500)
∨G(type(x) = HashMap → size(x) ≤ 500)Addition map.put(...)

map.putAll(...)
Structure ID
Size
Type

Deletion map.remove(...) Structure ID
Size
Type

Clear map.clear() Structure ID
Size
Type

HAS/HBR/HSS
Begin Beginning of the method

onPreExecute / onPostExecute
/ onProgressUpdate / onReceive
/ onStartCommand

Method call ID
Timestamp

Formula for a method call of id x:
F (begin(x) ∧ (X (¬begin(x) U (end(x)
∧(endT ime(x)− beginT ime(x) > 100)))))

End End of the method
onPreExecute / onPostExecute
/ onProgressUpdate / onReceive
/ onStartCommand

Method call ID
Timestamp

IOD
Begin Beginning of the method

onDraw
Method call ID
Timestamp

Formula for a method call of id x:
F (begin(x) ∧ (X( ¬begin(x) U (end(x)
∧(endT ime(x)− beginT ime(x) > 1/60))))) ∨
F (begin(x) ∧ ¬((¬new) U end(x)))

End End of the method onDraw Method call ID
Timestamp

New Instantiation (<init>) in the
onDraw method

Method call ID

NLMR
Begin Beginning of the method

onLowMemory / onTrimMemory
Method call ID
Memory state

Formula for a method call of id x:
F (begin(x) ∧ (X ¬begin(x) U (end(x)∧
(memoryEnd(x)−memoryBegin(x) < 1024))))End End of the method

onLowMemory / onTrimMemory
Method call ID
Memory state

Each property is, furthermore, parameterised by a vari-
able x. This variable x refers either to the instance of an
object or to the call of a method. For example, for the DW
code smell, the WakeLock of ID x will have the property φx.

In the following properties, there is a frequent use
of the Until (U ) operator. When two events, say acquire
and release, occur alternately, we are usually interested,
for an acquire event, in its corresponding release event.
This release event obviously occurs after the acquire, but,
furthermore, there are no additional acquire until this
release occurs. This is formally expressed by the condition
X(¬acquire U release). This expresses that, starting at the
next event of the sequence, there is no acquire event until
a release event occurs. We will use this formulation for
acquire/release, but also for the begin/end events.

Implementation: There is no implementation for this step.
The specification, i.e., the definitions of events and property,
is defined manually according to the description of the code
smell.

Running example:
DW:
Events: The events are triggered by calls to the methods
acquire and release of the WakeLock class. The associated value
is an integer indicating the id of the WakeLock instance.

The events Acquire and Release are associated to a unique
WakeLock instance.
Property: A code smell is detected each time an acquire on a
WakeLock is encountered but there is no release associated.
“Eventually, the WakeLock x is acquired and it is not the
case that its corresponding release occurs.”
LTL Formula for a WakeLock of ID x:
φx = F (acquire(x) ∧ ¬ (X (¬acquire(x) U release(x))))

5.1.1 Specification of the other code smells
We now detail, for each code smell detected by the DYNAM-
ICS tool, their events and their property.
HMU:
Events: The events are triggered by calls to the methods
of the classes HashMap, SimpleArrayMap and ArrayMap
influencing the size of the structures: new, put, putAll,
remove, clear. The values associated to each event are the
type of structure, i.e., its class, its actual size and its id.
Property: A code smell is detected if a SimpleAr-
rayMap/ArrayMap reaches a large size or if a HashMap
never reaches a large size. Structures of up to several
hundred elements are considered large [12]. Each set of
values whose size exceeds or is lower than 500 depending
on the type thus identifies a smell.
“Eventually (i.e., at some point in the sequence), the
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structure is either a SimpleArrayMap or an ArrayMap and its
size is greater or equal to 500.”
φ1x = F ((type(x) = SimpleArrayMap ∨ type(x) =
ArrayMap) ∧ size(x) ≥ 500)
“Globally (i.e., for all events in the sequence), if the structure
is a HashMap, its size is less or equal to 500.”
φ2x = G(type(x) = HashMap → size(x) ≤ 500)
Since there are two cases to check, the LTL Formula φx for
the structure x is the disjunction (logical “or”) of the two
previous LTL formulas φx = φ1x ∨ φ2x.

HAS/HBR/HSS:
Events: The events are triggered by calls to methods
specific to the code smell: onPostExecute, onPreExecute
and onProgressUpdate for HAS, onReceive for HBR,
onStartCommand for HSS. However, for all methods, there is
a Begin and End events, respectively at the beginning and at
the end of the method call. Each event is associated with a
timestamp and the ID of the method call.
Property: A code smell is detected each time a method
associated with HAS, HSS or HBR is encountered with an
execution time greater than 100ms, which corresponds to
the difference between the timestamps of the Begin and the
End events.

“Eventually, the beginning of the method call x is reached
and at the end of this method call, the elapsed time is
greater than 100ms.”
LTL Formula for a method call of id x:
φx = F (begin(x) ∧ (X (¬begin(x) U (end(x) ∧
(endT ime(x)− beginT ime(x) > 100)))))

IOD:
Events: The events are triggered by calls to the method
onDraw. Here again, there are Begin and End events at
the beginning and at the end of the method call. There
is, furthermore, an additional New event triggered by the
instantiation of new objects. Each event is associated with
the ID of the method call. The Begin and End events are
associated with a timestamp value.
Property: A code smell is detected each time an onDraw
method is encountered with an execution time greater than
1/60 of a second, or if we encounter an instantiation. The
difference between the timestamp values of the End and the
Begin events is used to compute the execution time of the
method.
“Eventually, the beginning of the method call x is reached
and at the end of this method call, the elapsed time is
greater than 1/60s, or the beginning of the method call x is
reached and it is not the case that there is no instantiation
before the call ends.”
LTL Formula for a method call of id x:

φx =F (begin(x) ∧ (X( ¬begin(x) U (end(x)

∧ (endT ime(x)− beginT ime(x) > 1/60s))))) ∨
F (begin(x) ∧ ¬((¬new) U end(x)))

NLMR:
Events: The events are triggered by the execution of the
methods onLowMemory and onTrimMemory. As before, there
are Begin and End events at the beginning and end of the

method. The Begin and End events are associated with the
amount of memory used at that moment and the ID of the
method call.
Property: A code smell is detected when an onLowMemory
or onTrimMemory method is encountered and the released
memory during this method call is inferior to 1024KB. The
difference between the memory values of the Begin and End
events is used to compute the amount of memory freed
during the execution of the method. It is also detected if
an Activity is present and do not define an onLowMemory
or onTrimMemory method. This second part of the detection
rule is detected statically and is not processed by the LTL
formula.
“Eventually, the beginning of the method call x is reached
and at the corresponding end the memory released during
the call is inferior to 1024KB.”
LTL Formula for a method call of id x:
φx = F (begin(x) ∧ (X ¬begin(x) U (end(x) ∧
(memoryEnd(x)−memoryBegin(x) < 1024))))

5.2 Step 2: Instrumentation
Inputs: The APK to instrument and the events associated to
the code smells.
Outputs: The instrumented APK with logging instructions.

Description: In this step, the objective is to instrument
the APK of a mobile app by adding logging instructions.
Concretely, the instrumentation consists in identifying the
relevant events located within the APK and inserting an
instruction that will produce a specific log entry for each
event. Thus, when the instrumented app is executed, a trace
composed of a sequence of log entries will be generated. In
our context, a log entry is a tuple (location, id, event, values)
where :

• location is the package, class and method names
where the event occurs;

• id is a sequential identifier that distinguishes several
occurrences of the same event in the same method of
the same class;

• event is the keyword associated to an event. The
events are listed in Table 1;

• values contains the values used for the LTL properties
of the code smells detection. The values may be
found in Table 1;

Furthermore, the instrumentation differs according to
the category the code smell belongs to:

• Code smells regarding the misuse of a method call
or a sequence of method calls. The instrumentation
is done by inserting an instruction for each call of the
concerned methods. A single code smell in this paper
belongs to this category: DW.

• Code smells regarding runtime issues within a
method. For these code smells the instrumentation
is done by inserting an instruction at the beginning
and at the end of the declaration of the concerned
method. Five code smells in this paper belong to this
category: HAS, HSS, HBR, IOD and NLMR. For these
code smells, the associated events contain a method
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call ID. This method call ID is determined from the
code location and determines the id in the log tuple.

• Code smells regarding undesired data variations of
an object during execution. The instrumentation is
done by inserting an instruction for each call of
a method that impacts the data of the concerned
objects. A single code smell in this paper belongs to
this category: HMU.

Implementation: This step requires a static analysis in
order to instrument the code. To achieve this, we have
developed a Java module, in Step 2 of the DYNAMICS
tool, using the SOOT framework [29] and its DEXPLER
module [35] to analyse APK artefacts. APK files are ZIP
archives containing various information, such as the
AndroidManifest.xml manifest defining all the metadata
of the app and a .dex file containing all the classes of
the app compiled into a dex format file [36]. The dex
bytecode is register-based, which means that translating it
into Java or intermediate languages implies an important
loss of information. This is due to the fact that the type
and name of local variables may be harder to retrieve, and
that the branches (for, while, if, ...) are replaced by goto.
SOOT converts the bytecode of APKs into a SOOT internal
representation, which is similar to the Java language.
DYNAMICS goes through the internal representation of
SOOT for each class, each method and each instruction of
the body of these methods. These instructions are converted
into Jimple, a simplified version of Java source code.
These instructions are analysed to detect if an event is
present. If such an event is present, instructions allowing
the generation of the log entries are inserted directly after
the event in the APK. Finally, a small but necessary task,
the generated APK must be signed in order to be executed
in the next step. We use JARSIGNER [37] to perform this.

Analysing the bytecode directly rather than the source
code has both advantages and disadvantages. For instance,
we do not need to have access to the source code nor do we
need to perform any compilation steps. On the other hand,
we cannot know the original line number associated with
the java instruction.

PowerManager . WakeLock completeWakeLock ;
( . . . )
completeWakeLock . acquire ( ) ;

Fig. 2. Java instruction example.

lambdaapp . LockManager . j a v a $ l o c k : 0 : dwacq : 1 4 5

Fig. 3. Log output associated with the Java instruction.

Running example: Figure 2 shows a call to the Wake-
Lock’s method acquire that locks the WakeLock. This is an
Acquire event for the DW code smell. In this case, the
instrumented app will output the log entry depicted in
Figure 3. This entry shows the method name lock, the class
name LockManager and the package name lambdaapp where
this call occurs. It also shows that this is the first event of this

type in the method thanks to the id 0. Finally, it indicates
that it is an Acquire event thanks to the dwacq keyword and
that it has operated on the structure of id 145.

5.3 Step 3: Execution
Inputs: The instrumented APK and the input generators.
Outputs: The execution traces obtained after running the
instrumented app with the input generation tools.

Description: This step consists in executing the instru-
mented app installed in a real or virtual device using
different input generators with different input configura-
tions (such as allowed execution time) to produce execution
traces. An input generator is a program that simulates user
interaction by generating app’s inputs, for example cliking
a specific button, entering a text in an input text or going
backward. This is an important step of the DYNAMICS tool
since these traces will allow the detection of the code smells.
Each time the execution reaches a logging instruction, a
specific log entry will be produced. The execution trace
is composed of all these log entries. Thus, the trace is
composed of all the events associated with the code smells
encountered during execution.

The challenge is naturally to reach a good coverage
of the instrumented code at runtime to capture as many
events as possible in order to potentially detect as many
code smells as possible.

Implementation: The execution can either be done manu-
ally by an already provided execution scenario or automati-
cally using an input generator. We chose to use input gener-
ation tools to automate this part. We compared the following
tools: DYNODROID [38], DROIDUTAN [39], DROIDBOT [31],
DROIDBOTX [32], HUMANOID [40] and MONKEYRUNNER
[30]. After some preliminary experiments with these tools
on the same set of mobile apps, comparing their ability
to trigger the events detected by our DYNAMICS tool, we
identified the following three input generators as the most
promising:

• MONKEYRUNNER: This is a tool that performs ran-
dom events on the user interface of the app. It is a
free random test tool included in the Android SDK.
This tool emulates a user interacting with an app,
generating and injecting pseudo-random actions, for
example, clicks, swipes, or system events into the
app’s event input stream.

• DROIDBOT: This tool is based on MONKEYRUNNER.
DROIDBOT is an open-source testing tool that uses a
model-based exploration strategy under a black box
approach. It also allows users to customise their test
scripts using the generated state transition model.

• DROIDBOTX: This tool is an extension of DROID-
BOT that generates random actions based on the
Q-Learning technique [41]. This approach system-
atically selects input events and guides exploration
to expose the functionality of an app under test to
maximise the coverage of instructions, methods and
activities by minimising redundant input events.

We use these three input generation tools on an emulator
to generate the traces that will be used for detection. We
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used the adb [42] command-line tool to install the APK. We
also used the logcat [43] command-line tool to retrieve the
log of the device, which contains the generated execution
traces. We filter those logs to select only the logs that match
our log format depicted in Section 5.2. Otherwise, there are
no filtering on the sequences generated.

lambdaapp . LockManager . j a v a $ l o c k : 0 : dwacq : 1 4 5
lambdaapp . LockManager . j a v a $ l o c k : 1 : dwacq : 1 9 1
lambdaapp . LockManager . j a v a $ l o c k : 2 : dwacq : 1 4 3
lambdaapp . LockManager . j a v a $ l o c k : 0 : dwrel : 1 4 5

Fig. 4. Excerpt of an execution trace.

Running Example: Figure 4 is an excerpt of a trace gen-
erated during an execution for the detection of the DW code
smell. The excerpt comes from the running example given
in Step 2. There are three WakeLocks of different identities as
shown in the trace. Only one of the WakeLocks is acquired
and then released, the two others are acquired but never
released. Therefore, the first one, of id 145, does not signal
the presence of a code smell whereas the two others, of ids
191 and 143, do.

5.4 Step 4: Detection

Inputs: A set of execution traces and the LTL properties
associated to the code smells.
Outputs: The detected code smells.

Description: This step consists in analysing the resulting
execution traces using the technique of runtime monitoring
to identify the code smells that have occurred. Concretely,
runtime monitoring consists in analysing the sequences
of events within execution traces and checking the LTL
properties on these sequences.

As seen in the specification step, the properties are
parameterised with a variable x. This variable x refers
either to the instance of an object or the call of a method.
Only events associated with this instance or this method
call must be used to check the property. This is necessary so
that properties are not verified using events from different
objects or method calls. For example, in order to check
the DW property one must not use the acquire event of a
WakeLock x1 with the release event of a different WakeLock
x2. Only events concerning the WakeLock of ID x must be
used in verifying property φx.

Implementation: For this step, we have implemented
a Java module that performs runtime monitoring in our
tool using the BEEPBEEP 3 framework [33]. BEEPBEEP 3 is a
stream processing engine that allows the processing of log
data. It allows multiple processing on the traces, including
verification of LTL formulas. We thus define a chain of
BEEPBEEP 3 processes allowing us to check if it is indeed
an event trace linked to a code smell. We specify a branch
per code smell to check the associated LTL property. When
the whole trace is processed, we obtain the detected code
smells.

Precisely, the chain can be divided into three steps: (1)
keep only DYNAMICS specific input lines; (2) keep only

input lines for a specific code smell; (3) check this specific
code smell’s LTL property using the input lines’ events
information in order to determine the presence of code
smells.

BEEPBEEP 3 also provides the possibility to slice the
trace according to a parameter. This allows us to check an
LTL formula for each element of a code smell. For example,
it allows us to check an LTL property for each HashMap of
different IDs for the HMU code smell. It also allows us to
check one LTL property for each different onDraw method
call encountered for the IOD code smell.

Running Example:
Figure 5 shows the processor chain required to detect

the DW code smell from an execution trace. BEEPBEEP 3
consists of processors linked together by pipes producing
an output according to an input.

In the figure a processor is represented by a square box,
with a pictogram representing the type of computation it
executes on events. On the sides of this box are one or more
”pipes” representing its inputs and outputs. Input pipes
are indicated with a red, inward-pointing triangle, while
output pipes are represented by a green, outward-pointing
triangle. The colour of the pipe indicates the nature of the
data flowing in the chain.

The processors 1 to 3 correspond to the first step : keep
only DYNAMICS specific input lines. The processors 4 to 11
correspond to the second step : keep only input lines for
a specific code smell. The processors 12 to 19 correspond
to the third step : check this specific code smell’s LTL
property using the input lines’ events information in order
to determine the presence of code smells.

First of all, processor 1 (ReadLines) reads the data line by
line from a file, in our case an execution trace of an app. It is
therefore the lines of the file that will run through the pipes
one by one. Processor 2 (ToString) then converts it to a String
while processor 3 (FindPattern) uses a regular expression to
keep only lines of the form location:id:event:values. Processor
4 is a Fork that duplicates the stream into multiple proces-
sors. Processors 5 (QueueSource) and 6 (function Contains
Strings) verify whether the stream contains the Acquire event
while, in parallel, processors 7 and 8 verify if the stream
contains the Release event. Processor 9 (Function Or) then
verifies if the stream contains an Acquire event or Release
event. Processor 10 (Filter) will continue to transmit the
stream only if the input Boolean is true, which, in our case,
means that the stream continues in this branch only if it
contains an Acquire or Release event, the two events related
to the DW code smell. Processor 11 (Function split string)
splits the string in an array, using the double point as a
separator and processor 13 (Slice) splits the events from the
stream into multiple substreams according to a parameter,
in our case the value of the log entry, the WakeLock ID.
We, therefore, obtain as many substreams as WakeLock IDs
encountered.

The output is a map containing the Id of the Wakelock
as a key, and a Boolean (true or false) indicating whether
the code smell is present or not as a value. The processors
15 and 16 (Function NthElement) select the first and fourth
elements of the array, i.e., the location and the Id of the
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Fig. 6. The BEEPBEEP processor chain for the LTL property for the detection of the DW code smell.

WakeLock that are then gathered in a map by processor 17
(PutInto (Maps)).

The processors 18 and 19 (KeepLast) are special proces-
sors that simply return the last events, in our case the filled
maps. So at the end of this stream, we get two maps, one
linking locations to IDs, and one linking IDs to the presence
of code smell.

Figure 6 shows the substream representing the LTL for-
mula for the detection of DW code smell, as depicted in the
“processor” 14 of the Figure 5. Here the formula to check is
φx = F (acquire(x) ∧ ¬ (X (¬acquire(x) U release(x)))).
The processor 1 select the second element of the in-
put, here the name of the event encountered and the
processor 2 dispatch the event. The processor 3 corre-
sponds to release(x) and the processor 4 corresponds to
¬acquire(x). The processor 5 takes the processors 3 and
4 as inputs to represent (¬acquire(x) U release(x)). The
processor 6 takes the processor 5 as input to represent

(X (¬acquire(x) U release(x))). The processor 7 is the
disjunction that takes the processor 6 and an acquire event
from the processor 2, it then represents (acquire(x) ∧
¬ (X (¬acquire(x) U release(x)))). Finally, we apply the
processor 8 to add the Eventually temporal operator F to
have the LTL property for DW code smell.

5.5 Discussion

When specific thresholds are used, the threshold values that
we use come either from the references from which the code
smells originate, such as for HMU or IOD or when the
reference only provides a qualitative description, such as
“time-consuming” or “reclaiming memory” for HAS, HSS,
HBR and NLMR. For the latter case, we use a value that to
the best of our knowledge matches this description taking
into consideration execution time and memory footprint
encountered during our tool’s execution. The values for the
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thresholds may be subjective and open to discussion, but
our method is generally applicable and our tool can easily be
modified to accommodate alternative values. The threshold
values used in DYNAMICS can be found in the definition
of the LTL properties of the code smells. For example, 500
elements for HMU, 100 ms for HAS/HSS/HBR, 1/60s for
IOD, 1024KB for NLMR.

The DYNAMICS tool is also extensible for new code
smells. To detect a new code smell, it suffices to give the
events associated and create an LTL formula for this code
smell’s property, as described in Step 1 Specification. The
other steps can be easily applied to these new code smells.

6 VALIDATION

In this section, we present the study that aims to validate
our proposed tool, DYNAMICS. We follow a mixed-method
methodology through quantitative and qualitative data col-
lection and analysis.

6.1 Research Questions

We aim to respond to the following three research questions:

• RQ1: Does DYNAMICS allows the detection of
behavioural code smells ? This question investigates
the effectiveness of DYNAMICS for the detection of
behavioural code smells. We attempt to identify the
extent to which DYNAMICS return positives in the
detection of behavioural code smells.

• RQ2: Does DYNAMICS performs better in terms
of precision and recall than the state-of-the-art
tools ? This question investigates the good precision
and recall of DYNAMICS on behavioural code smells
through more adapted detection methods.

• RQ3: Are there instances detected by the dynamic
analysis that could not have been detected statically
? Due to the DYNAMICS detection rules based on
dynamic analysis, we may detect instances of code
smells that only occur during runtime and are there-
fore unlikely to be detected by static analysis.

6.2 Subjects of the Validation

The validation is conducted primarily on our tool, DYNAM-
ICS. Then, we detect code smells on the same apps using two
other tools, ADOCTOR and PAPRIKA to compare the results.
These two tools are easy to use and open-source. These tools
use static detection techniques and are fully automatic.

In a previous paper [8] we considered these two tools,
PAPRIKA and ADOCTOR. We showed that they were rep-
resentative of state-of-the-art tools. A systematic procedure
was conducted to reduce the list of 19 state-of-the-art tools
to these two tools. PAPRIKA was taken from [44] and ADOC-
TOR was taken from [45].

We use DYNAMICS to detect seven Android-specific be-
havioural code smells: Durable WakeLock (DW), HashMa-
pUsage (HMU), Heavy AsyncTask (HAS), Heavy Broadcas-
tReceiver (HBR), Heavy Service Start (HSS), Init OnDraw
(IOD), No Low Memory Resolver (NLMR). None of the

other tools detects exactly the same code smells and covers
all of them. The aim is to compare the other tools with
DYNAMICS, not to compare them with each other. PAPRIKA
is able to detect HMU, HAS, HBR, HSS, IOD and NLMR
whereas ADOCTOR is able to detect DW and NLMR. The
definition of these code smells is provided in Section 2. The
seven behavioural code smells detected by DYNAMICS are
selected according to their depreciation and representative-
ness within the three behavioural categories, as specified in
the empirical study on behavioural code smells [8].

6.3 Objects of the Validation

�✁✁✂ ✄☎☎✆

✝✞✟✠ ✡☛☞✞✟✌✍

✎✏✑✒ ✓✏✔✕✖✒

✗✘✗✙✚✗✛✚✒ ✜
✢✁✣� ✄☎☎✆

✤✥✦� ✄☎☎✆

✎✏✧★✙✚✗✛✚✒ ✜ ✤�✁✥ ✄☎☎✆

✩✪✩ ✄☎☎✆

✫✬✓✭✕✔✧✒✬✭✮

✗✛✚✒ ✜
✤✦ ✄☎☎✆

✩✣✂ ✄☎☎✆

✯✒✓

✯✒✓

✯✒✓

✰✏

✰✏

✰✏

Fig. 7. Flowchart of the selection of the apps.

The study is based on 538 apps collected from F-DROID1.
This dataset consists of real open-source apps from F-DROID
published on GITHUB. F-DROID provides a dataset of real
apps that are neither dummy apps, templates, nor libraries.
To ensure that the apps and their associated source code are
retrieved, we make sure that the apps come from GITHUB,
are still available, and can be built and instrumented. The
apps are selected in the following way, as depicted in
Figure 7.

F-DROID provided 4008 apps. Of the 4008 apps, 3034
come from GITHUB, but only 2974 are still available on
GITHUB. All apps are built using the build automation
scripts provided by the developers on F-DROID. 565 apps
(out of 2974) could be built, and the rest of the apps (2409
= 2974 - 565) could not due mainly to non-functional scripts
or outdated elements. Finally, 538 (out of the 565 apps built)
could be instrumented while the rest of the apps (27 = 565
- 538) could not mainly due to too old APIs and specific
missing libraries.

We provide in [46] the complete list of our artefacts,
which include the list of APKs, APKs, execution traces,

1. https://f-droid.org/
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detected code smells for each tool, compiled results and our
tool.

6.4 Validation Process

The process of the study as illustrated in Figure 8 consists
of five main steps described in the following.
Step 1. Detection with the tools. We use ADOCTOR, DY-
NAMICS and PAPRIKA on the dataset of 538 apps to detect
the seven behavioural code smells, hence retrieving the
detected code smells (i.e., positive instances).
Step 2. Identification of potential code smells. In parallel,
we identify the potential code smells across the 538 apps.
These potential code smells are all the classes possibly
affected by a code smell conforming to its definition. The
potential code smells classes are identified during the in-
strumentation step of DYNAMICS (see Figure 1), in which the
events associated with the potential code smells are located
in the source code. The potential code smells classes are
therefore identified as follows:

• DW: Unique classes containing the Acquire event.
There are 45 Acquire events in 40 unique classes.

• HMU: Unique classes containing the HMU Instantia-
tion event. There are 1559 HMU Instantiation events
in 836 unique classes.

• HBR: Unique classes containing the onReceive
method (Begin/End Events). There are 719 unique
classes.

• HSS: Unique classes containing the onStartCommand
method (Begin/End Events). There are 134 unique
classes.

• HAS: Unique classes containing the onPreExecute
/ onPostExecute / onProgressUpdate methods (Be-
gin/End Events). There are 703 methods in 509
unique classes.

• IOD: Unique classes containing the onDraw method
(Begin/End Events). There are 130 unique classes.

• NLMR: Unique Activity classes. There are 18 such
classes containing the onLowMemory/onTrimMemory
methods (Begin/End Events) and 2002 Activity
classes without these methods, for a total of 2020
unique classes.

The potential code smells are also shown in the artefacts
[46].
Step 3. Filter undetected. For each tool, we filter the po-
tential code smells to only retrieve the undetected potential
code smells. The undetected potential code smells are the
potential code smells that have not been detected by the
tools, and are therefore not detected code smells. From all
the classes containing a potential code smell retrieved in
Step 2, we subtract all the classes detecting with a code
smell from Step 1. For example, the undetected potential
code smells from DYNAMICS for the HMU code smell are
all classes potentially having the HMU code smell from Step
2 minus the classes detected by DYNAMICS as having the
HMU code smell in Step 1. These are shown in the artefacts
[46].
Steps 4 and 5. Sampling. To consider statistically significant
samples for detected code smells in Step 4 and undetected
potential code smells in Step 5, we rely on stratified samples.

TABLE 2
True/False Positive/Negative instances.

Validated instances
Positives (V ) Negatives (V c)

Detected
code smells (D)

(positive instances)

True Positive (TP)
D ∩ V

False Positive (FP)
D ∩ V c

Undetected potential
code smells (Dc)

(negative instances)

False Negative (FN)
Dc ∩ V

True Negative (TN)
Dc ∩ V c

These stratified samples ensure that the proportion of each
code smell is preserved in the sample. The sample for each
code smell consists of the detected code smells fetched
by Step 1 and this method represents a 95% statistically
significant stratified sample with a 10% confidence interval.
Stratified sampling is furthermore always done on the acces-
sible code smells, i.e., those that can be found in the source
code. This is necessary since in order to validate the tools’
results, in Steps 6 and 7, the source code must be manually
inspected. The source code is however not required by our
tool but used only during these two manual validation
steps. Some code smells are however not accessible due to
obfuscation, as PAPRIKA and DYNAMICS analyse the APK
directly. This is also potentially a consequence of Kotlin,
which generates functions at compile time. For instance,
some of the generated functions contain HashMap, which
results in HMU code smells not accessible to PAPRIKA
nor DYNAMICS. It is also due to external libraries that are
returned in the results, as is the case for some of the code
smells detected by PAPRIKA.

From here, we can now distinguish the four types of
instances shown in Table 2 that are determined in the
following steps.
Step 6. Manual analysis. We analyse the positive sample
manually to determine which are true positives and which
are false positives. The true positives are the instances de-
tected by the tools and validated manually in conformance
with their code smells definition: TP = D ∩ V . The false
positives are the instances detected by the tools but vali-
dated manually not in conformance with the code smells
definition: FP = D∩V c. The sample is manually validated
by four PhD students with experience in code smells and
mobile apps. Each sampled instance was validated by at
least two people. In the few cases where there were discrep-
ancies, we revisited the case to reach a consensus.
Step 7. Manual analysis. Similarly, we analyse manually
the undetected potential code smells to determine which
are true negatives and which are false negatives. The true
negatives are the instances not detected by the tools and
validated manually not in conformance to the definition:
TN = Dc ∩ V c. The false negatives are the instances
not detected by the tools but validated manually to be in
conformance with the code smells definition: FN = Dc∩V .
The sample is manually validated by four PhD students
with experience in code smells and mobile apps.
Step 8. Validation. We calculate the precision using the
positive sample. Precision is the proportion of true positives
among the positives (here, detected code smells) |TP |

|D| . Then,
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Fig. 8. Overview of the process.

we calculate the recall with the positive sample and negative
sample. The recall is the proportion of true positives among
true positives and false negatives |TP |

|TP∪FN | .

6.5 Results
In this section, we will study and answer the research
questions case by case.

6.5.1 RQ1: Does DYNAMICS allows the detection of be-
havioural code smells ?
We investigate this research question through a quantitative
study. We first present the number of detected code smells
by the DYNAMICS tool, and compare them with those de-
tected by PAPRIKA and ADOCTOR.

First, we examine the number of detected code smells
by DYNAMICS depicted in Table 3. The number of detected
code smells varies greatly depending on the type of code
smell. We performed the detection for each input gener-
ator, as well as for the combination of the three input
generators. Overall, we note that DROIDBOTX allows the
detection of slightly more code smells than DROIDBOT, and
DROIDBOT allows the detection of more code smells than
MONKEYRUNNER. The combination of the three tools makes
it possible to obtain more code smells, which corresponds to
the union of the detected code smells by each input gener-
ator. The number of detected code smells depends on the
number of events encountered, and therefore on the quality
of the execution. The upper bound on detectable code smells
is defined by the potential code smells. Thus, one cannot
detect more code smells than there are classes containing
encountered events, e.g. one cannot detect more DW code
smells than there are classes containing encountered acquire
calls. Factors such as the chosen input generator and the
number of traces increase the number of detected code
smells. The execution time also has an impact on the number
of detected code smells. A longer execution time may allow
more events to be reached, and therefore potentially more
code smells to be detected.

This is however not always the case as shown in Table 3
that presents the number of detected code smells by DY-
NAMICS with 5-minutes and 10-minutes execution traces.
Some code smells have indeed more instances when we
double the execution time. But in other cases, the random
nature of the input generator yields a reduced number of

instances. In any case, combining traces from a 5-minutes
execution with those from a 10-minutes execution further
increases the total number of detected code smells, as pre-
sented in the last column ”5min & 10min” of Table 3.

For the sake of comparison, we also examine the de-
tected code smells by PAPRIKA and ADOCTOR presented in
Table 4. N/A means that the tool does not detect the code
smell. DYNAMICS returns fewer instances of code smells
than ADOCTOR or PAPRIKA. For example, the difference is
significant for DW where DYNAMICS detects 3 code smells
compared to ADOCTOR, which detects 95 code smells. Also,
for HAS DYNAMICS detects 15 code smells compared to
PAPRIKA that detects 109 code smells. The difference is
sometimes smaller, as for IOD where DYNAMICS detects
16 code smells compared to PAPRIKA that detects 18 code
smells. As discussed in our previous empirical study [8],
this may be due to the dynamic analysis allowing better
precision and fewer false positives. But it may also be due
to the fact that the coverage of events during the executions
is not perfect and that some false negatives are present in
the result of DYNAMICS.

RQ1: DYNAMICS allows the specific detection of
many types of behavioural code smells. However,
in terms of the number of instances, DYNAMICS
detects fewer instances (as presented in Table 4)
than ADOCTOR and PAPRIKA. As discussed in our
previous empirical study [8], PAPRIKA and ADOC-
TOR reported false positives (about 30%). We now
investigate the precision and recall of DYNAMICS to
better understand these results.

6.5.2 RQ2: Does DYNAMICS perform better in terms of
precision and recall than the state-of-the-art tools ?

We investigate this research question through a quantitative
study. We first present the precision and recall of DYNAM-
ICS, and we compare them with those of ADOCTOR and
PAPRIKA. Then, we discuss the recall of DYNAMICS by
presenting the coverage of events during the executions.

Based on the manual analysis presented in the validation
process depicted in Figure 8, we compute the precision and
recall of DYNAMICS. Table 5 gives the precision and recall of
DYNAMICS in comparison to ADOCTOR and PAPRIKA. Note
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TABLE 3
Number of detected code smells with DYNAMICS depending of the input generator with an execution during five minutes and an execution during

ten minutes.

Code
Smell

DROIDBOTX DROIDBOT MONKEYRUNNER

DROIDBOTX
DROIDBOT

MONKEYRUNNER

5min 10min 5min 10min 5min 10min 5min 10min 5min & 10min
DW 3 3 3 1 1 3 3 3 3
HMU 221 266 235 268 185 227 294 319 324
HAS 6 2 5 2 9 2 14 5 15
HBR 2 3 4 2 1 2 5 5 8
HSS 2 1 0 2 2 1 3 2 4
IOD 10 11 5 8 9 7 14 13 16
NLMR 2004 2004 2004 2004 2004 2004 2004 2004 2004

TABLE 4
Number of detected code smells by DYNAMICS, PAPRIKA and

ADOCTOR.

Code
Smell

#Code Smells
DYNAMICS

#Code Smells
PAPRIKA

#Code Smells
ADOCTOR

DW 3 N/A 95
HMU 324 573 N/A
HAS 15 109 N/A
HBR 8 305 N/A
HSS 4 63 N/A
IOD 16 18 N/A
NLMR 2004 1017 2999

that the precision and recall of DYNAMICS are computed
based on the detected code smells using the traces obtained
from the combination of the 5min and 10min executions
(Last column of Table 3). Table 3 reports the results for all
code smells except HBR and HSS. We choose to report only
the results of the HAS code smell because the detection rules
of HAS, HBR and HSS are very similar and differ only in
the name of the method. Also, the number of detected code
smells for HBR and HSS, in particular in PAPRIKA, is very
high (see Table 4), which makes the manual analysis time-
consuming. So, we specifically focus on HAS.

As presented in Table 5, the overall precision of DY-
NAMICS is high with an average of 92.8%. Also, DYNAMICS
provides better precision than the other two tools for every
behavioural code smell detected. Regarding the recall, DY-
NAMICS provides an average of 53.4% but the recall varies
greatly depending on the code smells. Unlike the precision,
the recall of DYNAMICS is not always better than the other
two tools. This may be due to the fact that the coverage
of events during the executions is not good. Indeed, some
events associated with code smells may have not been
encountered during the executions and thus, may cause the
occurrence of false negatives, i.e. undetected code smells
that should have been detected. Therefore, to verify this
supposition, we study the coverage of events during the
executions according to the input generators, the number of
executions and the execution time.

To assess the reliability of our results, we posed the null
hypotheses:

• H0(Precision): There is no statistically significant
difference in precision between DYNAMICS and the
state-of-the-art tools.

• H1(Recall): There is no statistically significant dif-
ference in recall between DYNAMICS and the state-
of-the-art tools.

To test those hypotheses, we performed McNemar tests,
comparing DYNAMICS results with those of PAPRIKA and
ADOCTOR. The results of these statistical analyses are de-
tailed in Table 5, which shows that, excepted the IOD code
smell, all the obtained p-values are very low < 0.00001%.
Therefore, based on the results, there is enough evidence to
reject the null hypotheses. We hence reject H0(Precision)
because, apart from the case where the precision is 100%
for each tool, the precision is much higher for DYNAMICS
than for the other tools and we reject H1(Recall) because
the recall was either way above or way below. Thanks to the
McNemar test in Table 5, we know that this is not due to
randomness, statistically speaking.

Table 6 shows the number of events (as specified in
Table 1) encountered in the code (dataset containing 538
APKs) and in the execution traces generated by DROID-
BOTX, DROIDBOT and MONKEYRUNNER. The events in the
code are unique source code characteristics located statically
in the app whereas the encountered events in the execution
traces are unique events encountered during the executions
as a result of dynamic analysis. The number of events varies
slightly depending on the input generator used and greatly
depending on the code smell. For example, for a 5 min-
utes execution, we encounter 272 HMU Instantiation events
with MONKEYRUNNER while we encounter 308 Instantiation
events for the HMU code smell with DROIDBOTX. Similarly,
with DROIDBOTX we encounter 4 Acquire events for the DW
code smell while we encounter 308 Instantiation events for
the HMU code smell. The coverage of events is higher using
DROIDBOT or DROIDBOTX than MONKEYRUNNER. How-
ever, it is possible to obtain better coverage of events with
MONKEYRUNNER by increasing the number of actions per
second as a parameter of the tool. In contrast, DROIDBOT
and DROIDBOTX only allow one action per second. Also,
combining the input generators, increasing the number of
executions and/or increasing the execution time results in
a slight improvement of the coverage of the events, just
as it increases the number of detected code smells (see
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TABLE 5
Precision and recall of DYNAMICS in comparison with ADOCTOR and PAPRIKA.

Code
Smell

#Detected CS
#Detected CS Sampled

#True Positives
Precision : |TP |

|D|

#Undetected Potential CS
#Undetected Potential CS Sampled

#False Negatives
Recall : |TP |

|TP∪FN|

McNemar’s test
χ2

p-value

DYNAMICS PAPRIKA ADOCTOR DYNAMICS PAPRIKA ADOCTOR Dyn vs Pap Dyn vs aDo

DW

3
3
3

100%

N/A

95
46
9

19.6%

37
27
7

30%

N/A

8
8
5

64.3%

N/A
24.143

< 0.00001%

HMU

324
69
44

63.8%

573
30
10

33.3%

N/A

512
76
43

50.6%

800
82
45

18.2%

N/A
254.429

< 0.00001%
N/A

HAS

15
11
11

100%

109
46
16

34.8%

N/A

494
79
17

39.3%

424
77
10

61.5%

N/A
50

< 0.00001%
N/A

IOD

16
16
16

100%

18
17
17

100%

N/A

114
41
12

57.1%

121
53
11

60.7%

N/A
2.333

< 0.126633%
N/A

NLMR

2004
92
92

100%

1017
87
87

100%

2999
93
93

100%

16
16
10

90.2%

1370
90
89

49.4%

1074
88
85

52.2%

1363.003
< 0.00001%

1061.014
< 0.00001%

Average precision of DYNAMICS : 92.8% Average recall of DYNAMICS : 53.4%
1395.199

< 0.00001%

984.067
< 0.00001%

TABLE 6
Number of events encountered in the code and in the execution traces of the input generation tools on DYNAMICS during 5 minutes and 10 minutes.

Code
Smell

Event
In the
code

DROIDBOTX DROIDBOT MONKEYRUNNER

DROIDBOTX
DROIDBOT

MONKEYRUNNER

5min 10min 5min 10min 5min 10min 5min 10min 5min & 10min

DW
Acquire 45 4 4 3 2 4 4 5 4 5/45 (11%)
Release 50 2 2 1 1 3 2 3 2 3/50 (6%)

HMU

Instantiation 1559 308 371 324 367 272 323 406 439 449/1559 (29%)
Addition 2654 158 187 141 211 134 164 205 254 265/2654 (10%)
Deletion 47 3 4 4 4 1 3 4 5 5/47 (11%)
Clean 438 18 33 15 28 19 18 29 42 43/438 (10%)

HAS Begin/End 703 90 113 89 103 68 91 128 132 143/703 (20%)
HBR Begin/End 719 43 58 42 58 44 40 66 84 94/719 (13%)
HSS Begin/End 134 25 31 31 37 27 28 40 43 48/134 (36%)

IOD
Begin/End 130 41 46 37 50 31 41 49 54 56/130 (43%)
New 487 9 9 4 10 5 6 9 11 11/487 (2%)

NLMR Begin/End 18 1 1 1 2 0 2 1 2 2/18 (11%)
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Table 3). However, it can happen that the coverage does
not improve. For example for the HBR code smell, with
MONKEYRUNNER, we got 44 40 Begin/End events for the 5
minutes execution and 40 Begin/End events with 10 minutes
execution. This is due to the fact that the actions generated
by a given input generator are done randomly. As an
example of the increase in the events coverage, with the
combination of the three input generators with the 5 and 10
minutes execution, we reach 94 encountered events for the
HBR Begin/End event, i.e., a significant increase of 62% (36
events) from the 58 events of DROIDBOTX, which was the
highest. On the other hand, for IOD, we reach 56 encoun-
tered events for the Begin/End event, i.e., a slight increase
of 12% (6 events) from the 50 events of DROIDBOT, which
was the highest. Despite the fact that we have increased the
execution time, the number of executions and the number
of input generators, the coverage remains low. It only varies
from 2% to at most 43% depending on the event. It seems
important to explore other input generators more adapted
in order to allow better coverage.

The study of the coverage of events confirms the suppo-
sition stated before that the recall is not that good because of
the low coverage of events. Indeed, the existing code smells
are bounded by the events in the code, e.g. 45 Acquire events
for the DW code smell. On the other hand, the detectable
code smells are bounded by the encountered events, e.g.
5 Acquire events for the DW code smell. There will be
therefore undetected potential code smells that should have
been detected, i.e. false negatives, as long the coverage is
under 100%. For example, there are 40 Acquire events for the
DW code smell that are not encountered by our tool that
potentially relate to a code smell. As these false negatives
are bounded by the events not encountered in the code, the
lower the coverage, the more frequent the false negatives,
and the lower the recall. However, one could expect the
coverage of events to be directly related to the recall, but it
is not as simple as that. While low coverage generally yields
low recall, a lower coverage does not necessarily imply a
lower recall. For instance, the HMU code smell, which has
29% coverage of the Instantiation event has a recall of 68.4%
whereas the IOD code smell, which has 43% coverage of the
onDraw methods has a recall of 57.1%. A detailed study of
input generator approaches and their impact on recall falls
outside the scope of this study but is surely worth further
investigation.

RQ2: DYNAMICS allows the precise and accurate
detection of behavioural code smells with a pre-
cision of 92.8% and a recall of 53.4%. The recall
depends strongly on the coverage of events during
the executions. Although the precision is high, the
recall is reasonable compared to the coverage of
events. Increasing the number of executions and the
time of the executions as well as combining the input
generators will allow only a negligible to a slight
improvement in the coverage. The coverage could
be improved by using a dedicated input generator.

6.5.3 RQ3: Are there instances detected by the dynamic
analysis that could not have been detected statically ?
Through a qualitative study, we examine each behavioural
code smell detected by DYNAMICS and discuss their
dynamic nature to explain why they have been detected
by DYNAMICS. We furthermore compare how the code
smells are detected using static detection tools such as
PAPRIKA and ADOCTOR as presented in Table 4 and Table 5,
and highlight the importance of dynamic analysis. The
results discussed are those obtained with the DROIDBOT,
DROIDBOTX and MONKEYRUNNER traces simultaneously
with an execution of 5 minutes and an execution of 10
minutes as presented in Table 3, Table 5 and Table 6.

DW: The DYNAMICS detection of the DW code smell pro-
vides a far better precision (100%) than ADOCTOR (19.6%)
while the recall is worse (30% against 64.3%). The big differ-
ence in precision is explained by the fact that the DYNAMICS
detection rule for DW explicitly verifies that a call to the
acquire method is not followed by a call to the release method
(whether it is within the same method or within a different
method belonging to the same class or a different class)
while ADOCTOR verifies only the presence of the acquire
string. The low recall is explained by the low coverage
of Acquire events during the execution (5/45 = 11% see
Table 6).

More precisely, for ADOCTOR, the static detection rule
mentioned in their reference paper [7] specifies that if a
method using an instance of the class WakeLock acquires the
lock without calling the release, a smell is identified. How-
ever, after inspecting the concrete implementation of the
rule within the ADOCTOR tool, we found that the implemen-
tation rule uses a regular expression “(.∗)acquire(\\s∗)()”
searching for the string ”acquire” in the code, and not
the specific acquire method of the WakeLock class. A large
number of false positives with ADOCTOR refer to acquire
methods that do not belong to the WakeLock class.

Within the execution traces, out of the 5 DW Acquire
events encountered (see Table 6), three were related to
a code smell and two were not. Regarding the two DW
Acquire events not related to a code smell, we found that
each acquire method is called and effectively followed by
a release method. Each of the 3 Acquire events correctly
detected as code smells by DYNAMICS is not followed by
a call to a release method although the method is present
in another method of the same class. This shows that the
presence of the acquire and release methods are not sufficient
to exclude them as code smells. A concrete call to these
methods within the same WakeLock is required. Current
static tools such as ADOCTOR are thus insufficient for the
precise detection of this code smell.

HMU: The DYNAMICS detection of the HMU code smell
provides a slightly better precision (63.8%) and recall
(50.6%) than PAPRIKA (respectively 33.3% and 18.2%). These
results are explained by the fact that the DYNAMICS de-
tection rule for HMU explicitly identifies small HashMaps
(less than 500 elements) and big ArrayMap/SimpleArrayMap
(more than 500 elements) while PAPRIKA identifies only
the presence of HashMaps. Also, whether for DYNAMICS
or PAPRIKA, most of the HashMaps identified are small.
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This preponderance of small HashMaps explains the slight
difference between the precision and recall obtained by
PAPRIKA that detects any use of HashMap as a code smell.

More precisely, within the execution traces, out of the 449
HMU Instantiation events encountered (see Table 6), only
three are ArrayMaps and one is a SimpleArrayMap, all the
other events are HashMaps. Among these HashMaps, most
of them are small HashMaps. Only two are HashMaps that
exceed 500 elements and five go beyond 100 elements. The
three ArrayMaps and the SimpleArrayMap encountered are
small and thus, do not relate to HMU instances.

From a more technical point of view, for the detection of
HMU, we have identified two interesting technical aspects.
The first one is that the executions generated by the input
generators do not necessarily allow the structures to reach
a sufficiently large size to identify the presence of an HMU.
Indeed, an execution that leads to a sufficiently large size
within a specific structure may often require doing specific
actions in a loop, and input generators rather perform
multiple random explorations. The second interesting
technical aspect relates to the detection within the KOTLIN
apps. Indeed, the detection of the HMU code smell gives
at least a third more HMU instances when performed on
KOTLIN apps. Indeed, the compilation of KOTLIN apps
generates automatically for the Activity and Fragment
classes a large number of methods containing HashMaps,
not present in the source code. We excluded them from
the sampling and consider other HMU instances. We plan
to refine the detection of DYNAMICS in the next version to
exclude the generated methods.

HAS: The DYNAMICS detection of the HAS code smell
provides a far better precision (100%) than PAPRIKA (34.8%)
while the recall is worse (39.5% against 61.5%). The big
difference in precision is explained by the fact that the
DYNAMICS detection rule for HAS considers the execution
time of the method, while PAPRIKA uses the cyclomatic
complexity and instruction count metrics. However, these
last two metrics give a very crude estimation of execution
time whereas DYNAMICS considers specifically the execu-
tion time of the method. The low recall is explained by
the low coverage of Begin/End events during the execution
(143/703 ≈ 20% see Table 6).

Indeed, out of the 15 detected instances with DYNAMICS,
14 are not detected by PAPRIKA (Table 5). In contrast, out
of the 143 HAS Begin/End events encountered during the
execution (Table 6), 126 were not related to a code smell
according to DYNAMICS. Also, among the 126 methods not
related to a code smell according to DYNAMICS, 25 were
detected as code smells by PAPRIKA. This shows that a
short method with low cyclomatic complexity and a low
number of instructions can take a long time to execute, and
a long method with high cyclomatic complexity and a large
number of instructions can execute quickly.

IOD: The DYNAMICS detection of the IOD code smell
provides the same precision as PAPRIKA (100%) and the
recall is almost even (57.1% for DYNAMICS against 60.7% for
PAPRIKA). Although these results in terms of precision and
recall are quite similar, the detected instances are not similar.
DYNAMICS detects this code smell using one property di-

vided into two parts. The first part of the property verifies if
the execution time of the method is under 1/60s. The second
part of the property verifies if there is the initialisation of an
object in the onDraw method during the execution. PAPRIKA
identifies this code smell by analysing statically if there is
an initialisation of an object in the onDraw method. Since the
DYNAMICS detection rule uses two parts, we could expect
to detect more code smells with DYNAMICS. However, both
tools detect almost the same number of instances because
DYNAMICS encounters fewer methods during the execution.
Indeed, the recall of DYNAMICS is explained by the coverage
of only 43% of the methods during the execution (see
Table 6).

More precisely, among the 16 IOD code smells (see
Table 5), 6 are detected due to the presence of a New event,
8 are detected because the execution time exceeds 1/60th
of a second, and 2 were detected because of the presence
of both the New event and the exceeding execution time.
The 8 (6 + 2) instances detected by the presence of the
New event should have been also detected by the PAPRIKA
detection rule but it detects only 2 of them. This can be
explained by the difference in the concrete implementations
of the detection rule within PAPRIKA and DYNAMICS. The 8
instances detected by the exceeding execution time cannot
be detected by static tools because of the dynamic nature
of the related rule. This shows the benefit of the dynamic
nature of our tool.

NLMR: The DYNAMICS detection of the NLMR code smell
provides the same precision as PAPRIKA and ADOCTOR
(100%) and the recall is better (90.2% for DYNAMICS against
49.4% for PAPRIKA and 52.2% for ADOCTOR). This differ-
ence in the recall is explained by the slight difference in
the interpretation of the methods to consider. DYNAMICS
detects this code smell using two rules, one static and the
other one dynamic. The static rule verifies if an onLowMem-
ory or onTrimMemory method is implemented within an
Activity class. The dynamic property verifies if one of these
methods releases less than 1024KB of memory. Firstly, DY-
NAMICS considers the onTrimMemory method in addition
to the onLowMemory of any class that inherits directly or
indirectly from Activity unlike ADOCTOR and PAPRIKA.
Indeed, onLowMemory has been deprecated after the publi-
cation of these two tools. Secondly, ADOCTOR also considers
the FRAGMENT class, which is another Android class that
implements the ComponentCallbacks interface that defines
the onLowMemory and onTrimMemory methods. Therefore,
ADOCTOR detects more code smells than DYNAMICS. For
its part, PAPRIKA excludes the Activity classes that inherit
from another internal Activity of the app, which explains
why it detects fewer code smells than DYNAMICS. All three
approaches seem valid according to the interpretation of
the NLMR code smell. However, the retrieval of potential
code smells and thus the sampling is done according to our
interpretation, which biases the recall.

More precisely, on the 2004 NLMR instances detected,
2002 NLMR code smells (true positives) are detected by
the static rule and 2 (true positives) are detected by the
dynamic property, meaning the encountered methods were
not clearing caches properly. Indeed, only two methods are
encountered during the execution, as shown in Table 6. We
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also notice that there are only 18 methods identified in the
source code, so this code smell is likely to be rather present
as each app has at least one Activity.

Hence, this code smell’s detection does not allow us to
evaluate the benefit of our dynamic approach since the vast
majority of code smells are detected statically. Only two
instances of code smells are detected due to the dynamic na-
ture of DYNAMICS. The detection rules are therefore almost
identical for the three tools, depending on the interpretation
of the code smell.

To conclude, the qualitative study shows that DYNAMICS
is indeed able to be applied to the three categories of
behavioural code smells: (1) The behavioural code smells
characterised by the misuse of a method call or a sequence
of method calls during the execution such as DW; (2) The
behavioural code smells characterised by runtime issues,
such as a long execution time of a method or excessive use of
the memory such as HAS, HBR, HSS, IOD or NLMR; (3) The
behavioural code smells characterised by undesired data
variations during execution, such as the size of a structure
becoming excessively large, such as HMU.

RQ3: DYNAMICS allows the precise and accurate
detection of behavioural code smells due to its
dynamic nature. For each behavioural code smell,
DYNAMICS allows the detection of specific instances
of code smells that were not possible to detect by
static analysis. Such detection is possible for the
code smells belonging to the three categories of
behavioural code smells. DYNAMICS allows also the
detection of instances of code smells that were pos-
sible to detect by static analysis.

6.6 Threats to Validity
Internal Validity. The main threat to internal validity could
be the input generators tools used. Indeed, the results
depend a lot on the execution traces obtained. We could
have gotten more significant results, especially for HMU,
if we had good event coverage with the input generators.
Moreover, each input generator used is based on a degree
of randomness, meaning it can generate different traces if
we run them several times. Different traces can potentially
lead to a different detection of code smells. However, we
pre-selected the input generators tools from a set retrieved
from the state of the art to select the ones that seemed to be
the most efficient to deal with. Another threat to internal
validity is that adding instrumentation-related instructions
could slightly negatively impact performance and corrupt
detected code smells. Those added instructions are minimal
and a comparison of the execution time before and after
instrumentation showed no significant difference.

External Validity. The main threat to external validity
could be the dataset used for the validation. The use of
good quality and mature open-source projects may cause
some code smells to be almost absent. Most of these code
smells can be found in apps under development. F-DROID
provides us with a variety of apps, more or less mature and
of various quality, which allows us to have a representative

dataset.

Construct Validity. For some code smells, the thresholds
applied to identify them may be subjective in nature,
although the properties associated to the detection of the
code smells are based on the definition and references
from which the definitions are drawn. In addition, the
interpretation of some code smells can also be subjective,
such as the NLMR code smell where the property ensures
that the onLowMemory method frees a certain amount of
memory. Similarly, for the IOD code smell, the property
ensures that the execution time of the onDraw method,
must be executed in less than 1/60th of a second. However,
the threshold values in DYNAMICS can be adjusted and
adapted to the context of the app.

Repeatability/Reliability Validity. The results of the
validation are repeatable and reliable because DYNAMICS
and all necessary related tools are open-source and available
in the artefacts [46]. The results are also available in our
artefacts.

Implication. We proposed DYNAMICS, a tool-based ap-
proach to automatically detect behavioural code smells in
Android by dynamic analysis. Both researchers and practi-
tioners can benefit from our work because we provide (1)
a formal specification for seven code smells, (2) a method
and tool to detect behavioural code smells, which can be
extended to any behavioural code smells and (3) an empir-
ical validation on 538 real apps using manual validation.
DYNAMICS can be used by researchers and practitioners
to validate and improve the quality of mobile apps. The
execution step, furthermore, does not need to necessarily
be automated by input generators; an application can be
run manually to detect behavioural code smells. User tests
already integrated into the development of an application
can also be used in our approach to detect behavioural
code smells encountered during these tests. The use of input
generators or predefined test scenarios can therefore enable
practitioners to add DYNAMICS to continuous integration or
continuous development. Each step has a different compu-
tational time. The specification step is only carried out once
when defining code smells, so the time is insignificant. The
instrumentation step time varies according to the size of the
application, but is extremely fast, in seconds. The detection
step evolves according to the size of the traces, but is also
excessively fast, in seconds. However, the execution step can
be quite long. In our experiment, this took up to 10 minutes.
Longer or repeated executions may even be necessary to
achieve better results, as shown by the event coverage in
the validation. However, by using predefined scenarios, for
example in user test scenarios already present in the test
battery, this could be accelerated. A dynamic approach like
DYNAMICS will therefore take longer than a static approach,
especially if there is a need to integrate additional executions
into a continuous integration.

7 CONCLUSION AND FUTURE WORK

In this paper, we introduced DYNAMICS, a tooled-based
method to detect behavioural code smells in mobile apps
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using dynamic analysis. DYNAMICS consists of four steps.
First, we specify the behavioural code smells through events
and LTL properties. Second, DYNAMICS takes as input a
mobile app in the form of an APK to produce an instru-
mented app. Then, it executes the instrumented app to gen-
erate execution traces using input generator tools. Finally,
it analyses the execution traces to detect behavioural code
smells that manifest during the execution of the mobile app
(by ensuring that the LTL properties related to behavioural
code smells are preserved). We perform a validation on the
detection of seven Android-specific code smells on 538 real
mobile apps fetched from F-DROID. We applied a mixed-
method analysis to understand the results of our validation.
Quantitatively, we analysed the detection results of DYNAM-
ICS on the 538 apps and compare them to ADOCTOR and
PAPRIKA in terms of the number of instances, precision and
recall. Qualitatively, we analysed in detail the code smells
reported and compared them with the static analysis detec-
tion tools to highlight the importance of dynamic analysis.
The validation indicates that DYNAMICS allows the precise
and accurate detection of behavioural code smells due to
its dynamic nature. DYNAMICS allows the detection of three
categories of behavioural code smells. (1) The behavioural
code smells characterised by the misuse of a method call or
a sequence of method calls during the execution; (2) The
behavioural code smells characterised by runtime issues,
such as a long execution time of a method or excessive use of
the memory; (3) The behavioural code smells characterised
by undesired data variations during execution, such as the
size of a structure becoming excessively large. Any type of
code smells that fall into these categories can be detected
by DYNAMICS. We believe that DYNAMICS is a tool that
can be useful as a complement to traditional static tools to
provide finer-grained detection of behavioural code smells.
The lower recall with high precision of DYNAMICS com-
bined with the high recall with lower precision of a static
method suggests that an ideal solution would combine both
in a clever way to outperform both dynamic and static
detection. A study of the complementarity is one of the
first conceivable future works. A study on the evaluation
of DYNAMICS by gathering the opinions of developers is
also envisaged, in order to determine what the possible
improvement points are. This should be the subject of an
empirical study, possibly controlled by monitoring the tech-
nical and human parameters. All the scripts and software
required for replication to perform such an evaluation are
available in the artefacts. As other future work, we intend to
extend DYNAMICS to detect more behavioural code smells,
especially by defining new behavioural code smells that
benefit from our method. We also plan to work on dedicated
input generators to improve the coverage of events, in order
to reach a better recall for the detection of behavioural code
smells. Finally, we plan to instrument apps that will be
used by real users over a longer period of time. This would
make it possible to have executions that are more realistic
and significant and thus improving the event coverage and
recall.
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