
Learning Communicating State Machines

Alexandre Petrenko, Florent Avellaneda

CRIM, Canada
{Alexandre.Petrenko, Florent.Avellaneda}@crim.ca

Abstract. We consider the problems of learning and conformance testing of components

in a modular system. We assume that each component can be modelled as a Finite State

Machine (FSM), the topology of the system is known, but some (or all) component FSMs

are unknown and have to be learned by testing the whole system, as it cannot be

disassembled. Thus the classical problem of active inference of an automaton in isolation

is now further lifted to a system of communicating FSMs of an arbitrary topology. As

opposed to the existing work on automata learning, the proposed approach neither needs

a Minimally Adequate Teacher, also called the Oracle, nor uses it a conformance tester

to approximate equivalence queries. The approach further enhances a SAT solving

method suggested by the authors and allows to adaptively test conformance of a system

with unknown components assuming that internal communications are observable. The

resulting tests are much smaller than the classical universal conformance tests derived

from the composite machine of the system.

Keywords: component-based systems, communicating FSMs, active inference, FSM

learning, conformance testing, adaptive testing, testing in context, SAT solving.

1 Introduction

Software industry often uses a component-based development approach to create soft-

ware intense systems by selecting appropriate off-the-shelf components and assembling

them with a well-defined architecture [13]. While practitioners are typically using ad

hoc development techniques, model-based software engineering is investigating formal

approaches which can offer automation to various phases of modular system develop-

ment. In most cases, however, the components do not come with formal models, just

with executable or in some cases source code. Models are nevertheless highly desired

since they document the design, support test generation and model checking various

properties and facilitate refactoring of a system. This explains a growing interest in au-

tomata inference. This important topic is addressed in many works, see, e.g., [14, 5, 8,

2, 6, 3], which treat a system as one black box unit, even if it contains components with

known models and only some need to be learned. Most of the existing methods for query

learning of an automaton model in isolation involve a Minimally Adequate Teacher, also

2

called the Oracle, and use conformance or random tests to approximate equivalence que-

ries [2, 3, 17, 25, 16]. Grey box inference, i.e., learning modular systems has only re-

cently started to be investigated [1, 20]. In our previous work [20], we considered a

system of two communicating FSMs, one modelling an embedded component and an-

other - its known context and proposed a SAT solving approach to test and infer the

embedded component. In fact, testing and model inference are closely related problems

[4, 19], which could be solved by the SAT solving approach. In this paper, we further

advance this approach to apply to a system of communicating FSMs with an arbitrary

number of components and arbitrary topology.

The difference between black and grey box inference is as follows. When a given

system is treated as a black box, a correctly learnt conjecture must be equivalent to a

black box FSM. If however, the system is treated as a grey box, conjectures for compo-

nents of a grey box are not necessarily equivalent to their respective FSMs, they are only

required to compose an FSM that is equivalent to the composed FSM of the grey box.

This fact has been successfully used in the area of logical design to optimize a given

sequential circuit containing several components. Redesigned components must pre-

serve the external behavior of the original circuit [25].

The interest towards modelling systems by communicating FSMs can be traced back

to the eighties since an important work of Zafiropulo et al. [26]. Luo et al. [15] suggested

a method for conformance testing of interacting FSMs based on determining a compo-

site FSM that presents the external observable behavior of component FSMs. Such a

machine exists assuming that the system has a single message in transit and does not

fall into livelock. Thus, the system is treated as a black box, even if its topology is

known.

Systems of communicating FSMs with unknown components are also considered in

previous work [9, 10, 21]. The goal is to verify a given system by detecting intermittent

errors. The proposed approach combines techniques for machine inference, testing and

reachability analysis. Inferring a composite FSM of the system, an approximated model

in the form of a -quotient is obtained; the precision of the model is defined by the

inference parameter . Components models can then be obtained from the -quotient

by projections. Differently from that work, the proposed approach infers exact models

and does not need to disassemble the system for unit testing.

Another body of related work addresses the so-called unknown component problem,

where a basic task is to synthesize an unknown component that when combined with

the known part of the system (the context) satisfies a given overall specification. This

problem arises in various applications ranging from sequential synthesis to the design

of discrete controllers [25]. The monograph [24] details the approach for reducing this

problem to solving equations over languages and FSMs. This problem statement is in

fact similar to conformance testing and learning of unknown components considered in

this paper since both problem statements require a specification composite FSMs. The

approach based on solving FSM equations targets the largest solution from which a

3

minimal one can then be chosen for the unknown component, while the SAT solving

approach directly determines an FSM of a minimal size. For systems with several un-

known components and unknown composite FSMs, only the SAT solving approach

elaborated in this paper is applicable.

The paper is organized as follows. Section 2 provides definitions related to state ma-

chines and automata. Composition, topology and composite FSM for communicating

FSMs are formally defined in Section 3. A SAT solving method for simultaneous infer-

ence of communicating machines from their observed traces is presented in Section 4.

Section 5 details a method for checking conformance of a system with unknown com-

ponents and Section 6 describes the method for learning component FSMs in an arbi-

trary grey box. Section 7 concludes.

2 Definitions

A Finite State Machine or simple machine M is a 5-tuple (S, s0, I, O, T), where S is a

finite set of states with an initial state s0; I and O are finite non-empty disjoint sets of

inputs and outputs, respectively; T is a transition relation T  S  I  O  S, (s, a, o, s)

 T is a transition. When we need to refer to the machine being in state s  S, we write

M/s.

M is complete (completely specified) if for each tuple (s, a)  S  I there exists

transition (s, a, o, s)  T, otherwise it is partial. M is a trivial FSM, denoted , if T =

. It is deterministic if for each (s, a)  S  I there exists at most one transition (s, a, o,

s)  T, otherwise it is nondeterministic. FSM M is a submachine of M' = (S', s0, I, O,

T') if S  S' and T  T'.

An execution of M/s is a finite sequence of transitions forming a path from s in the

state transition diagram of M. The machine M is initially connected, if for any state s 

S there exists an execution from s0 to s. Henceforth, we consider only deterministic

initially connected machines.

A trace of M/s is a string in (IO)* which labels an execution from s. Let Tr(s) denote

the set of all traces of M/s and TrM denote the set of traces of M. For trace   Tr(s),

we use s-after- to denote the state M reached after the execution of from s; for an

empty trace  s-after- = s. When s is the initial state we write M-after- instead of s0-

after-.

Given a string   (IO)*, the I-restriction of  is a string obtained by deleting from

 all symbols that are not in I, denoted I.

The I-restriction of a trace   Tr(s) is said to be a transfer sequence from state s to

state s-after-. The length of , denoted ||, is defined as the length of its I-restriction.

A prefix of trace   Tr(s) is a trace   Tr(s) such that the I-restriction of the latter is

a prefix of the former.

4

Given an input sequence  and state s, we let out(s, ) denote the O-restriction of the

trace that has  as its I-restriction. States s, s  S are equivalent w.r.t. , denoted s ≅

s, if out(s, ) = out(s, )they are distinguishable by , denoted s ≇ s or simply s ≇

s, if out(s, )  out(s, ). States s and s are equivalent if they are equivalent w.r.t. all

input sequences, i.e., Tr(s) = Tr(s), denoted s ≅ s. The equivalence and distinguisha-

bility relations between FSMs are similarly defined, e.g., FSMs are equivalent if their

initial states are equivalent.

Given two FSMs M = (S, s0, I, O, T) and M′ = (S′, s′0, I, O, T′), their product M  M′

is the FSM (P, p0, I, O, H), where p0 = (s0, s'0) such that P and H are the smallest sets

satisfying the following rule: If (s, s')  P, (s, x, o, t)  T, (s', x, o, t')  T', then (t, t') 

P and ((s, s'), x, o, (t, t'))  H. It is known that if M and M′ are complete machines then

they are equivalent if and only if the product M  M′ is complete.

We also use the classical automaton model. A Finite Automaton A is a 5-tuple (P, p0,

X, T, F), where P is a finite set of states with the initial state p0; X is a finite alphabet; T

is a transition relation T  S  X {}  S, where  represents an internal action, and F

is a set of final or accepting states, defining the language of A, denoted L(A). We shall

use several operations over automata, namely, expansion, restriction, and intersection,

following [24].

Given an automaton A = (P, p0, X, T, F), and a finite alphabet U, the U-expansion of

automaton A is the automaton, denoted AU, obtained by adding at each state a self-loop

transition labeled with each action in U \ X.

For an automaton A and an alphabet U, the U-restriction of automaton A is the au-

tomaton, denoted AU, obtained by replacing each transition with the symbol in X \ U

by an -transition between the same states.

Given automata A = (P, p0, X, T, FA) and B = (R, r0, Y, Z, FB), such that X  Y  ,

the intersection A  B is the largest initially connected submachine of the automaton (P

 R, (p0, r0), X  Y, Q, FA  FB), where for each symbol a  X  Y and each state (p, r)

 P  R, ((p, r), a, (p, r))  Q, if (p, a, p)  T and (r, a, r)  Z. The intersection

operation is associative, hence it applies to more than two automata.

We also define an automaton corresponding to a given FSM M. The automaton, de-

noted by A(M), is obtained by splitting each transition of M labeled by input/output into

two transitions labeled by input and output, respectively, and connecting them with an

auxiliary non-final state. The original states of M are only final states of A(M), hence

the language of A(M) coincides with the set of traces of M.

3 FSM Composition

We consider a system of communicating FSMs defined as follows. Let M1, …, Mk be a

set of component FSMs in the system, where Mi = (Si, si0, XiVi, OiUi, Ti), is a

5

complete deterministic machine. The input alphabets are partitioned into external Xiand

internal Vi inputs. The output alphabets are also partitioned into external Oiand internal

Ui outputs. The sets of states, inputs and outputs are assumed to be pairwise disjoint,

except for pairs of sets of inputs Vi and outputs Uj, j≠i. These sets define the topology

of the given system, namely, if Vi  Uj ≠ , then the output of Mj is connected to the

input of Mi.

Formally, the topology of the given system is the set{(Vi, Uj) | Vi  Uj ≠ , i, j  {1,

…, k}}, denoted T(M1, …, Mk). We define a well-defined topology by excluding insuf-

ficiently connected machines.

Then the topology of the given communicating FSMs is well-defined, if for each i =

1, …, k, Vi =  implies Ui ≠ , Ui =  implies Vi ≠ , and i
kVi = i

kUi. Intuitively, a

component without internal inputs (outputs) must have internal outputs (inputs), and all

internal inputs as well as outputs must be corresponding outputs and inputs, respec-

tively. Since simple removal of isolated machines could make topologies of the result-

ing systems well-defined, we assume henceforth well-definedness for granted. In this

paper, we also assume that all communications between machines are unicast, so mul-

ticast is not used. Formally, this constrains the topology of a given system by requiring

that all the sets of internal inputs are pairwise disjoint.

In the following, we shall use X = k
i=1Xi for the set of external inputs, O = k

i=1Oi

for the set of external outputs and I = k
i=1Vi = k

i=1Ui for the set of internal actions.

The behavior of a system of communicating FSMs is controlled by its environment

which submits external inputs and receives external outputs. If the environment is al-

lowed to submit inputs before it receives an external output, the system may need to

buffer actions using queues. Then their size is defined by the number of consecutive

inputs preceding the output caused by the first input. It is usual in testing to consider a

so-called slow environment that ensures that there is only a single message in transit

[15]. A slow environment can be modelled as a “chaos” automaton Env = ({p0, p1}, p0,

X  O, T, {p0}), where T = {(p0, x, p1) | x  X}  {(p1, o, p0) | o  O}. After issuing an

external input to the system it enters the non-initial state p1 and returns to the final state

when an external output is produced by the system where it issues a next input. Its lan-

guage is the set (XO)*.

In a system that has only a single message in transit, an internal output of one ma-

chine is immediately consumed only by one machine as its input, the communications

are thus performed in fact by rendezvous. This allows to define an FSM composition

operator using the intersection of their corresponding automata which has all the possi-

ble executions of the system with the slow environment.

 Given M1, …, Mk, where Mi = (Si, si0, XiVi, OiUi, Ti), let A(M1), …, A(Mk) be

automata corresponding to the given FSMs. The composite automaton, denoted A(M1,

…, Mk), is the intersection k
i=1A(Mi)I  EnvI. The language of A(M1, …, Mk) is the

6

set of all accepted words labelling all the executions of the closed system of communi-

cating FSMs with the slow environment. The external behavior of the system is ex-

pressed in terms of external inputs X and outputs O, so it is the set of (X  O)-restrictions

of accepted words of A(M1, …, Mk), i.e., the set of external traces of the system. They

are traces of an FSM that could be obtained by removing -transitions in A(M1, …,

Mk)XO and pairing each input with a subsequent output, if it exists, to an FSM transi-

tion’s label. Final states of A(M1, …, Mk) become states of the FSM. If some external

input is not followed by an external output it is deleted from the corresponding final

state of A(M1, …, Mk)XO, making the FSM partial. Thus, a complete FSM can be ob-

tained only if the automaton A(C) has no livelocks, i.e., cycles labelled by internal ac-

tions in I [24]. We let C(M1, …, Mk) denote the resulting complete machine, called the

composite FSM of the system.

Example. Consider two communicating FSMs M1 and M2 shown in Fig. 1 (a) and (b),

respectively [20]. The composite FSM C(M1, M2) is in Fig. 1 (c). The composite autom-

aton A(M1, M2) is shown in Fig. 2.

Fig. 1. The FSM M1 (a), FSM M2 (b) and composite FSM C(M1, M2) (c).

a b
3

x1/u1
v2/u2

x2/u1 v1/u1
x1/u2
v1/o1 x2/o2 v2/o1

1 u2/v1

u2/v2
u1/v1
u1/v1 u2/v1 3

2
u1/v1

x2/o1

x1/o1 x1/o1

x2/o1 x1/o1

x2/o2 x1/o1
x2/o2

(a)

(b)
(c)

v1 u1 u1 v1 o1

x2

x2 o2

x1 u2

x1

u1
v1 o1 x2

x1

o2

x1
x2

u1 v1

u2 v2
o1

7

Fig. 2. The composite automaton A(M1, M2), final states are in bold.

4 Inference from Traces

In this section, we address the following inference problem. Given a system of k com-

municating FSMs with a known topology T(M1, …, Mk), such that some component

FSMs are unknown, assume that we are also given a set of traces produced by each

component when some sequences of external inputs are applied to the system. We want

to infer for each unknown component a conjecture consistent with the observed traces.

Given a string   (IO)*, let Pref() be the set of all prefixes of . We define a

(linear) FSMW() = (X, x0, I, O, D), where D is a transition relation, such that |X| =

|| + 1, and there exists a bijection f: X  Pref(), such that f(x0) = , (xi, a, o, xi+1) 

D if f(xi)ao = f(xi+1) for all i = 0, …, || - 1, in other words, W() has the set of traces

Pref(). We call it the -machine. Similarly, given a finite prefix-closed set of traces

  (IO)* of some deterministic FSM, let W() = (X, x0, I, O, D) be the acyclic de-

terministic FSM such that  is the set of its traces, called an -machine. The bijection

f relates states of this machine to traces in .

While the set of traces of the -machine is , there are many FSMs which contain

the set  among their traces. An FSM C = (S, s0, I, O, T) is called an -conjecture, if

  TrC.

The states of the -machine W() = (X, x0, I, O, D) and an -conjecture C = (S, s0,

I, O, T) are closely related to each other. Formally, there exists a mapping : X  S,

such that (x) = s0-after-f(x), the state reached by C with the trace f(x)  . The mapping

 is unique and induces a partition C on the set X such that x and x belong to the same

block of the partition C, denoted x =C
 x, if (x) = (x).

Given an -conjecture C with the partition C, let D be an -conjecture with the

partition D, such that   , we say that the partition C is an expansion of the parti-

tion D, if its projection onto states of  coincides with the partition D.

We now lift the above notions to a system of communicating FSMs.

Given k FSMs, let 1, …, k be the sets of their observed traces and W(i) = (Zi, zi0,

XiVi, OiUi, Di), i = 1, …, k be the -machines. We want to determine for each

W(i) a conjecture Ni = (Si, s0, XiVi, OiUi, Ti) with at most nistates, i.e., |Si| ≤ ni.

Each state of the -conjectures is represented by a variable s, that belongs to one of the

sets S1 = {1, …, n1}, S2 = {n1+1, …, n1+n2}, …, Sk = {k-1
i=1ni+1, …, k

i=1ni}. To sim-

plify further formulas, we use mi to denote i
j=1nj so that Si = {mi-1+1, …, mi}. Thus we

need to find k mappings i: Zi  Si, i = 1, …, k satisfying the following constraints:

z, z  Zi: if z ≇ z then i(z)  i(z) and

if a  XiVi s.t. out(z, a) = out(z, a) = o, where o  OiUi, then (1)

i(z) = i(z) ⇒ i(z)-after-ao = i(z)-after-ao

8

A mapping i satisfying (1) defines a partition on Zi and each block becomes a state

of the i-conjecture, we use Ni to denote the partition. All the mappings, if exist,

define a global partition N1, …, Nkon k
i=1Zi, the states of all k conjectures.

Inspired by [12], we translate these formulas to SAT using unary coding for integer

variables, represented by mk Boolean variables vz,1, …, vz,mk, where mk = k
i=1ni.

For each z  Zi and all i = 1, …, k we have the clauses:

vz,mi-1+1 …  vz,mi (2)

They mean that each state of each -machines must be in at least one block.

For each z  Zi, all i = 1, …, k, and all p, q  {mi-1+1, …, mi} such that p  q, we

have the clauses:

 vz,p   vz,q (3)

They mean that each state of each -machines must be in at most one block.

We use auxiliary variables ez,z. For each z Zi and each z Zj such that i  j

ez,z (4)

For every z, z Zi such that z ≇ z and all i = 1, …, k, we have

ez,z (5)

For every z, z Zi such that out(z, a) = out(z, a) = o for some o  OiUi and all i

= 1, …, k, we have

ez,z ⇒ ez-after-ao,z-after-ao (6)

For every z, z Zi, all i = 1, …, k, and all p  {mi-1+1, …, mi}

ez,z  vz,p ⇒ vz,p (7)

ez,z  vz,p ⇒ vz,p (8)

The resulting Boolean formula is the conjunction of clauses (2) - (8). If it is satisfiable

then a solution is a set of conjectures for all unknown components. A solution might

not necessarily be unique, hence to solve the problems of conformance testing and

learning we need to make sure that the found set of conjectures is unique or to determine

another set of non-equivalent conjectures.

This is achieved by using the following procedure inferring all conjectures for the

unknown components at once. We let  denote a set of global partitions each of which

defines k conjectures already inferred from the previously observed traces. To ensure

generation of different conjectures, partitions are used to formulate additional con-

straints. The procedure generates a set of conjectures, such that the number of states of

each conjecture does not exceed a given upper bound, if they exist. The conjectures are

verified for livelock by composing them (with the known FSMs, if any) into a composite

automaton, as explained in the previous section. If it has a livelock then the procedure

tries to find another set of conjectures and uses the global partition induced by the con-

jectures to avoid repeated regeneration in further iterations. The procedure is formalized

in the following algorithm.

9

Algorithm 1. Infer_conjectures({1, …, k},{M1, …, Mm},{n1, …, nk}, )

Input: Sets of FSM traces 1, …, k, a set of known FSMs M1, …, Mm, a set of

integers n1, …, nk, and a set of global partitions

Output: A set of k conjectures and an updated set of partitions or False.

1. formula = conjunction of the clauses (2) - (8)

2. loop do

3. for all    do

4. clause = False

5. for all z, zsuch that z = z do

6. clause = clause  ez,z

7. end for

8. formula = formula  clause

9. end for

10. if formula is not satisfiable then

11. return False

12. end if

13. {N1, …, Nk} := call-solver(formula)

14. if A(N1, …, Nk, M1, …, Mm) has no livelock then

15. return {N1, …, Nk}, 

16. end if

17. N1, …, Nk

18. end loop

To check the satisfiability of a formula one can use any of the existing solvers, calling

the function call-solver(formula).

5 Checking Conformance with Unknown Components

In this section, we consider the following conformance testing problem. Given a system

of communicating FSMs, such that some component FSMs are unknown, assume that

we are also given an FSM that describes the expected external behavior of the system,

called a specification composite FSM. We assume that the system has no livelocks, so

its external behavior can be represented by a complete composite FSM. We need to

determine whether the composite FSM of the system conforms (is equivalent) to the

specification or find a counterexample, i.e., an external test that distinguishes them,

otherwise. Moreover, if the system conforms to the specification then we want to learn

all its unknown component FSMs. We assume that all the internal interfaces are observ-

able, but only external inputs are controllable, so the system is a grey box with a single

message in transit. The problem reflects a practical situation when in a modular system

10

some components are replaced by their updated versions and one needs to test whether

the external behavior is not changed.

The proposed method for checking conformance and learning component FSMs ver-

ifies whether the current conjectures obtained from already observed traces when com-

posed together with known component FSMs behave as the given specification FSM.

If they do not then the product of the specification and composite FSMs is used to de-

termine a sequence of external inputs that distinguishes them. It is applied to the grey

box obeying the property of a slow environment Env, so observed traces are inputs al-

ways interleaved with outputs. The observed traces extend the set of traces of unknown

components unless the grey box does not produce the output sequence of the specifica-

tion. In the last case, the external input sequence is returned as a counterexample, the

current conjectures are also reported as a diagnostics of the observed non-conformance

of the grey box. The process iterates as long as the current conjectures form a conform-

ing system. The method calls Algorithm 1 that builds conjectures, checks whether they

are unique and returns them, if it is the case, terminating the process. Algorithm 1 calls

in turn a SAT solver constraining it to avoid solutions of already considered conjectures.

The solver may not find any solution when the assumed bounds on the state numbers

are insufficiently low. In this case, the algorithm needs to be executed with increased

bounds. The procedure is implemented in Algorithm 2.

Let GB denote the system of the component FSMs M1, …, Mk, …, Mk, such that the

first k, 0 < k ≤ k components are unknown, and n1, …, nk are the bounds on the number

of their states, respectively. We let M denote a complete FSM over the same external

inputs and outputs as GB, called the specification FSM.

Algorithm 2. Checking conformance and learning components

Input: A GB with known components Mk+1, …, Mk and a specification FSM M.

Output: Unknown component FSMs or a test that distinguishes the composite FSM

of GB from M.

1. i := , i = 1, …, k

2.  := 

3. while conjectures N1, …, Nk and are returned by Infer_conjectures({1, …,

k},{Mk+1, …, Mk},{n1, …, nk}, ) do

4. if C(M1, …, Mk) C(N1, …, Nk, …, Mk) is complete then

5. returnN1, …, Nk

6. end if

7. Let a be an external input sequence such that  is the shortest transfer sequence

 to a state with the undefined input a in C(M1, …, Mk) C(N1, …, Nk, …, Mk)

8. Let  be the external trace and 1, …, k be unknown components’ traces

 observed when the input sequence a is applied to GB

9. If  is not the trace of C(M1, …, Mk) then

10. return “the test a distinguishes GB from M and the conjectures N1, …, Nk”

11

11. end if

12. i := iii = 1, …, k

13. end while

14. return “the bounds n1, …, nk are too low”

Note that the Boolean formula used by the SAT solver is built incrementally; a cur-

rent formula is saved and new clauses are added when any set i or  is augmented.

Theorem 1. Algorithm 2 learns unknown components of a conforming grey box or

returns a counterexample test, otherwise.

Sketch of Proof. If in line 5, C(M1, …, Mk) C(N1, …, Nk, Mk+1, …, Mk) is complete,

then the grey box is equivalent to the specification and N1, …, Nk is a solution for un-

known components. If in line 9,  is not a trace of C(M1, …, Mk), then since  is an

external trace, the test a as its input sequence distinguishes GB from the specification

M. At each iteration in the while loop, a trace is added to at least one set i. Thus, at

least one potential solution N1, …, Nk is eliminated among the possible solutions. Since

the number of states in components is fixed, the number of potential solutions is

bounded. Thus, the loop will end when all potential solutions are eliminated. ∎

The algorithm was implemented in C++ with MiniSat solver [7] and we use this

prototype for experiments in a VirtualBox with 8 GB of RAM and i5-7500 processor.

Step

External trace

Added

variables

Added

clauses

Time

sec

1  5 6 13

2 x1o1 30 63 17

3 x2o1 22 42 10

4 x1o1x2o2 14 29 8

5 x1o1x1o1 43 90 15

6 x1o1x1o1x1o1 53 115 415

7 x2o1x1o1x2o1 136 300 48

8 x1o1x2o2x2o1x1o1 176 391 158

9 x1o1x2o2x1o1x1o1x2o2 314 701 109

10 x1o1x1o1x2o2x1o1 272 628 89

11 x1o1x1o1x2o2x1o1x1o1x2o2 215 479 76

12 x1o1x1o1x1o1x1o1x2o2 235 525 226

13 x2o1x1o1x1o1x1o1x2o1 651 1481 199

14 x1o1x1o1x2o2x2o1x1o1x2o1 626 1411 173

Total 2792 6261 1156

Table 1. Testing conformance and learning component FSMs.

12

Example. We consider the communicating FSMs shown in Fig. 1. Assuming that both

FSMs are unknown, but their composite FSM shown in Fig. 1 (c) is known, we use the

prototype tool to learn the component FSMs. Let the bounds on the number of states in

the components be two for M1 and three for M2.

Algorithm 2 executes 14 cycles in about one millisecond and terminates. As ex-

pected, no test distinguishing the system from the specification FSM is found. Fig. 3

shows the resulting conjectures N1 and N2. The conjecture N2 is a partial machine, the

first two states can be merged to obtain a minimal FSM with two states. Their composite

FSM is equivalent to the specification FSM in Fig. 2. One can notice that the learnt

conjectures are simpler that the original FSMs; in fact, they have fewer transitions and

the minimal form of the second conjecture has not three, but two states. Table 1 provides

a summary of execution details for all cycles of Algorithm 2, namely, the number of

variables and clauses added in each step and time in microseconds. It is interesting to

notice in Table 1 that time required to solve a SAT instance does not grow linearly with

the number of variables and clauses. In our incremental approach, newly added clauses

often just speed up the process of finding a solution. In the context of automata learning,

similar observations were also previously reported [19]. This indicates that the number

of variables and clauses cannot be directly used to characterize the complexity of the

SAT solving approach to the FSM inference problem. It is intuitively clear that the more

component FSMs are unknown the higher the complexity of the learning and testing

problems. In the running example, we consider that both component FSMs are un-

known, if, however, we assume that only M2 is unknown then conformance testing and

learning a single unknown component FSM requires fewer tests.

Fig. 3. The resulting conjectures N1 and N2.

To demonstrate how Algorithm 2 executes when given a nonconforming grey box,

we assume that the second component FSM is like M2 in Fig. 2 (b), except for a transi-

tion from state 3 to state 1 that has the label u1/v2 instead of u1/v1. The first seven exe-

cuted steps are exactly the steps shown in Table 1. Then three more steps are performed

to determine the sequence of external inputs x2x1x2x2 that distinguishes the composed

FSM of the mutated system from the specification FSM. The two produce different

external traces x2o1x1o1x2o1x2o1 and x2o1x1o1x2o1x2o2.

We now compare the cost of checking conformance of the grey box system with

observable internal communications to that of the black box system without such ob-

servations. As Table 1 indicates, to test conformance of the given grey box 13 tests

u
2
/v

1

u
2
/v

2

u
1
/v

1

u
1
/v

1

u
1
/v

1

 x
2
/u

1

x
1
/u

1

v
1
/u

1
 x

1
/u

2

v
1
/o

1

x
2
/o

2

v
2
/o

1

13

suffice and overall 60 test actions (47 external inputs and 13 resets) need to be applied

to the system. When internal interactions cannot be observed, the whole system be-

comes a black box. To test communicating FSMs we use universal conformance tests

which could be derived from their composite FSM. In our example, the composite FSM

is shown in Fig. 1 (c). The conformance tests should be constructed assuming that the

number of states in the system can reach six, since the bounds for the components’ state

number are two and three, respectively. Considering the set {x2x1x2, x1x2} as a charac-

terization set W of the composite FSM, the W-method [23] generates 40 input sequences

of the total length of 276. We conclude that the proposed approach for testing conform-

ance of communicating FSMs as a grey box offers an important save in testing efforts.

Testing a system as a grey box is adaptive, since test actions are determined based on

the observations and compared to the execution of universal conformance tests against

the system treated as a black box it could not be less effective. To the best of our

knowledge, it is the first method for adaptive conformance testing of communicating

FSMs of an arbitrary topology.

6 Learning a Grey Box

In this section, we consider the problem of inferring communicating FSMs. This is a

generalization of the classical FSM inference problem [11, 18, 22] to a system of FSMs.

As in the previous section, we are given a system of communicating FSMs with a known

topology and external input alphabet. It is assumed that all the internal interfaces are

observable, but only external inputs are controllable, so the system is a grey box with a

single message in transit. We also assume that the grey box has no livelock, so its ex-

ternal behavior can be represented by an FSM.

Differently from the conformance testing problem in Section 5, we now know neither

specification composite FSM nor any component FSM. We need to learn all component

FSMs at once. Yet, as before, we fix the upper bounds on the number of states of each

component. As discussed above, the “right” bounds could be determined by iterative

execution of our learning method with increasing bounds.

We let GB denote a system of unknown FSMs M1, …, Mk and n1, …, nk be the bounds

on the number of their states, respectively. The learning procedure is implemented in

Algorithm 3. It is an enhancement of Algorithm 2 replacing the specification FSM M

by the composite FSM of the current conjectures.

Algorithm 3. Learning a grey box

Input A grey box GB with a known external alphabet and integers n1, …, nk

Output Conjectures for all k components

 i := , i = 1, …, k

2. 

14

3. Ni =  (trivial FSM), i = 1, …, k

4. while conjectures D1, …, Dk and  are returned by Infer_conjectures({1, …,

k}, {},{n1, …, nk}, ) do

 if C(D1, …, Dk) C(N1, …, Nk) is complete then

 :=  D1, …, Dk

 else

 Let a be an input sequence such that  is the shortest transfer sequence to

a state with the undefined input a in C(D1, …, Dk) C(N1, …, Nk)

  Let  be the external trace and 1, …, k be components’ traces observed

when the input sequence a is applied to GB 

 i := ii}, i = 1, …, k

 if  is not a trace of C(N1, …, Nk) then

 {N1, …, Nk},  := Infer_conjectures({1, …, k}, {},{n1, …, nk}, )

13. end if

14. end if

15. end while

16. return N1, …, Nk

The algorithm returns the conjectures as a main result, but also it determines sets of

observed traces of each component used to infer them. The uniqueness of the conjec-

tures is that they form a composite FSM of the given grey box, as stated in the following.

Theorem 2. Algorithm 3 returns the conjectures N1, …, Nk such that CN1, …, Nk≅

C(M1, …, Mk) and for each grey box with components L1, …, Lk such that Li has at most

ni states, TrLi  i for each Li and the topology T(M1, …, Mk) we have CL1, …, Lk≅

C(M1, …, Mk).

Proof. When Algorithm 3 terminates, the result N1, …, Nk is such that CN1, …, Nk≅

C(M1, …, Mk) because N1, …, Nk are FSMs consistent with traces {1, …, k}, and all

other solutions L1, …, Lk are such that CL1, …, Lk≅ C(N1, …, Nk) or have livelock.

Now we prove by contradiction that if there exist L1, …, Lk such that for each Li, TrLi 

i and the number of states does not exceed ni, then CL1, …, Lk≅ C(M1, …, Mk).

Assume that there exist L1, …, Lk such that CL1, …, Lk≇ C(M1, …, Mk). Because the

formula used in Infer_conjectures({1, …, k}, {},{n1, …, nk}, ) is not satisfiable

when Algorithm 3 returns N1, …, Nk, the global partition induced by L1, …, Lk is in .

This would mean that either CL1, …, Lk≅ C(N1, …, Nk) or there exists  in such

that is not a trace of C(L1, …, Lk). However, these two cases are not possible. ∎

15

The algorithm was also implemented in C++ with MiniSat solver and we use this

prototype for experiments as in Section 5.

Example. We consider our running example of the FSMs shown in Fig. 1. Assume we

know only the external alphabet and the bounds on the number of states in the compo-

nents, two for M1 and three for M2.

Algorithm 3 executes 42 cycles in about ten milliseconds and terminates returning

the same conjectures as Algorithm 2, see Fig. 3. 24 cycles out of 42 do not add any new

traces, they just update the set of global partitions by adding a single clause in line 7 of

Algorithm 3. Table 2 provides the details for the remaining 18 steps; the missing num-

bers belong to 24 omitted steps. The observations made in Section 5 about relations

between time and the number of variables and clauses in Table 1 are also valid for Table

2.

As Table 2 indicates to learn both components of the given grey box 17 tests suffice

and overall 76 test actions (59 external inputs and 17 resets) need to be applied to the

system. Comparing this to the scenario of learning components with a given specifica-

tion composite FSM where 13 tests with 60 test actions are used, we can conclude that

the absence of an oracle played by the specification FSM complicates the inference

problem. Notice that if in this example, the FSM M1 is known and only M2 needs to be

learnt then it is sufficient to use only 5 tests with 19 test actions (14 external inputs and

5 resets).

Step External trace

Added

variables

Added

clauses

Time

µsec

1  5 6 22

2 x1o1 30 63 59

3 x2o1 22 42 46

5 x1o1x1o1 39 84 47

6 x1o1x2o2 18 35 36

7 x1o1x1o1x1o1 53 115 63

8 x1o1x1o1x1o1x1o1 63 140 107

9 x1o1x2o2x1o1 122 284 123

13 x1o1x1o1x1o1x2o2x1o1 188 436 199

18 x1o1x1o1x2o2x1o1 228 535 196

22 x2o1x1o1 129 293 206

23 x2o1x1o1x1o1 228 550 203

24 x2o1x1o1x2o1 122 263 188

27 x2o1x1o1x2o1x1o1x2o2 231 525 294

28 x1o1x2o2x2o1x1o1x2o1 522 1177 336

30 x1o1x2o2x1o1x1o1x2o2 291 653 318

36 x1o1x1o1x2o2x2o1x1o1x2o1 642 1450 643

40 x2o1x1o1x1o1x1o1x2o1 504 1150 620

16

Total 3437 7825 9846

Table 2. Learning the grey box.

7 Conclusions

We considered the problems of learning components and conformance testing of a mod-

ular system. The system is modelled by FSMs communicating by message passing with

a single message in transit. Communications between machines defines the topology of

the system. The composite FSM represents the external behavior of the system. Formu-

lating the learning problem we assume that some or all component FSMs are unknown

and have to be learned by testing the whole system, as it cannot be disassembled. The

system is then tested as a grey box, since internal actions are observed when external

tests are executed. Thus the classical problem of active inference of an automaton in

isolation is now further lifted to a system of communicating FSMs of an arbitrary to-

pology. To the best of our knowledge, no method was proposed to solve this problem

yet. Compared to the existing work on automata learning, the proposed approach neither

needs a Minimally Adequate Teacher (Oracle), nor uses it a conformance tester to ap-

proximate equivalence queries.

The problem of conformance testing of communicating FSMs with unknown com-

ponents is quite similar to the above problem. Since checking conformance of a given

system requires a specification FSM, a composite FSM is used as an oracle for con-

formance testing. The proposed approach allows to adaptively test conformance of a

system with unknown components. The resulting tests are much smaller that the classi-

cal universal conformance tests derived from the composite FSM of the system. More-

over, unknown components are also learned once the system is found to be conformant.

It is worth to notice that while we assumed that all the internal interactions can be

observed, the approach works even when a given system is partially observable. Any

part of a system with fully observable inputs and outputs can be learnt as a single FSM

that is a composite FSM of all components of the subsystem.

As a future work it could be interesting to relax some assumptions used in the pro-

posed approach, e.g., determinism and absence of queues and to investigate learning of

systems which use communications other than message passing.

Acknowledgements. This work was partially supported by MEI (Ministère de l’Écon-

omie et Innovation) of Gouvernement du Québec and NSERC of Canada.

References

1. Abel A, Reineke J. Gray-box learning of serial compositions of Mealy machines. NASA For-

mal Methods Symposium, 272-287 (2016)

17

2. Angluin D., Learning regular sets from queries and counterexamples. Information and com-

putation, 75(2), 87–106 (1987)

3. Bennaceur, A., Giannakopoulou, D., Hähnle, R., Meinke, K. Machine learning for dynamic

software analysis: Potentials and limits, Springer, LNCS 11026, (2018)

4. Berg, T. et al. On the correspondence between conformance testing and regular inference, in

Proceedings of the 8th International Conference on Fundamental Approaches to Software

Engineering, LNCS 3442, 175-189, (2005).

5. Biermann, A. W., Feldman, J. A. On the synthesis of finite-state machines from samples of

their behavior. IEEE Transactions on Computers, 100(6), 592-597 (1972)

6. De la Higuera, C. Grammatical inference: learning automata and grammars. Cambridge Uni-

versity Press (2010)

7. Eén, N., Sörensson, N. An extensible SAT-solver. In International conference on theory and

applications of satisfiability testing, Springer, Berlin Heidelberg, 502-518 (2003)

8. Gold, E. M. Complexity of automaton identification from given data. Information and control,

37(3), 302-320 (1978)

9. Groz, R., Li, K., Petrenko, A., Shahbaz, M. Modular system verification by inference, testing

and reachability analysis. In Testing of Software and Communicating Systems, Springer, Ber-

lin Heidelberg, 216-233 (2008)

10. Groz, R., Li, K., Petrenko, A. Integration testing of communicating systems with unknown

components. Annals of telecommunications, 70 (3-4), 107-125 (2015)

11. Groz, R., Simao, A., Petrenko, A. Oriat, C. Inferring FSM models of systems without reset.

In Machine Learning for Dynamic Software Analysis: Potentials and Limits. LNCS 11026,

Springer, Cham., 178-201, (2018)

12. Heule, M.J., Verwer, S. Exact DFA identification using SAT solvers. In International Collo-

quium on Grammatical Inference. Springer Berlin Heidelberg, 66-79 (2010)

13. Jaffar-ur Rehman, M., Jabeen, F., Bertolino, A., Polini, A. Testing software components for

integration: a survey of issues and techniques. Softw. Test. Verif. Reliab., 17, 95–133 (2007)

14. Kella, J. Sequential machine identification. IEEE Transactions on Computers, 100(3), 332-

338 (1971)

15. Luo, G., von Bochmann, G., Petrenko, A. Test selection based on communicating nondeter-

ministic finite-state machines using a generalized Wp-method. IEEE Transactions on Soft-

ware Engineering, 20(2), 149-162, (1994)

16. Meinke, K. CGE: A sequential learning algorithm for Mealy automata. In ICGI, 148-162

(2010)

17. Peled, D., Vardi, M.Y., Yannakakis, M.: Black box checking. Journal of Automata, Lan-

guages and Combinatorics, 7(2), 225–246 (2001)

18. Petrenko, A., Avellaneda, F., Groz, R., Oriat, C. From passive to active FSM inference via

checking sequence construction. In IFIP International Conference on Testing Software and

Systems. Springer, 126-141 (2017)

19. Petrenko, A., Avellaneda, F., Groz, R. Oriat, C. FSM inference and checking sequence con-

struction are two sides of the same coin, Software Quality Journal, 2018,

https://doi.org/10.1007/s11219-018-9429-3

20. Petrenko, A., Avellaneda, F. Inference and conformance testing of embedded components, In

IFIP International Conference on Testing Software and Systems. Springer, LNCS 11146,

119-134, (2018)

https://doi.org/10.1007/s11219-018-9429-3

18

21. Shahbaz, M., Shashidhar, K.C. and Eschbach, R., Iterative refinement of specification for

component based embedded systems. In Proceedings of the 2011 International Symposium

on Software Testing and Analysis, 276-286, (2011)

22. Steffen, B. et al. Active Automata Learning: From DFAs to interface programs and beyond,

ICGI, 195–209 (2012)

23. Vasilevski, M. P. Failure diagnosis of automata. Cybernetics, Plenum Publishing Corpora-

tion, New York, No 4, 653-665 (1973)

24. Villa, T., Yevtushenko, N., Brayton, R. K., Mishchenko, A., Petrenko, A., Sangiovanni-Vin-

centelli A. L. The Unknown Component Problem: Theory and Applications, Springer, (2012).

25. Villa, T., Petrenko, A., Yevtushenko, N., Mishchenko, A., Brayton, R., Component-based

design by solving language equations, Proceedings of the IEEE, Vol. 103, No. 11, 2152-2167

(2015)

26. Zafiropulo, P., West, C., Rudin, H., Cowan, D., Brand, D. Towards analyzing and synthesiz-

ing protocols. IEEE Transactions on Communications, 28(4): 651–661 (1980)

