Efficient Inference of Optimal Decision Trees

Florent Avellaneda

Postdoc at the Computer Research Institute of Montréal (CRIM)

AAAI-20 New York

Overview

2 Method

3 Benchmarks

Overview

Black Box

Black Box

Florent Avellaneda

Question: How to choose the model?

Florent Avellaneda

Efficient Inference of Optimal Decision Trees

William of Ockham (1287–1347)

Plurality must never be posited without necessity

William of Ockham (1287–1347)

Plurality must never be posited without necessity

Modern formulation

Among competing hypotheses, the one with the fewest assumptions should be selected

William of Ockham (1287–1347)

Plurality must never be posited without necessity

Modern formulation

Among competing hypotheses, the one with the fewest assumptions should be selected

Another modern formulation

The simplest explanation for some phenomenon is more likely to be accurate than more complicated explanations

William of Ockham (1287–1347)

Plurality must never be posited without necessity

Modern formulation

Among competing hypotheses, the one with the fewest assumptions should be selected

Another modern formulation

The simplest explanation for some phenomenon is more likely to be accurate than more complicated explanations

Keep things simple!

Parsimony Principle for Decision Tree

Question: How to choose the model?

 $\Rightarrow~$ Choose the "simplest" decision tree

Parsimony Principle for Decision Tree

Question: How to choose the model?

 $\Rightarrow~$ Choose the "simplest" decision tree

Rain?	Monday?	Hot?	Umbrella?	
Yes	No	No	Yes	
Yes	Yes	Yes	Yes	
Yes	No	Yes	Yes	
No	Yes	No	No	

Parsimony Principle for Decision Tree

Question: How to choose the model?

 \Rightarrow Choose the "simplest" decision tree

Learning an optimal decision tree is an NP-complete problem [Hyafil & Rivest '76, Hancock et al. '96]

Learning an optimal decision tree is an NP-complete problem [Hyafil & Rivest '76, Hancock et al. '96]

The majority of decision tree inference algorithms are greedy algorithms (C4.5, ID3, CART, ...)

Learning an optimal decision tree is an NP-complete problem [Hyafil & Rivest '76, Hancock et al. '96]

The majority of decision tree inference algorithms are greedy algorithms (C4.5, ID3, CART, ...)

Recently, some algorithms have been proposed to infer optimal decision trees:

- [Narodytska et al. IJCAI-18] Inferring decision trees with a minimum number of nodes and consistent with the training dataset
- [Verwer et al. AAAI-19] Inferring decision trees with a given depth and with a minimum number of classification error on training dataset

Learning an optimal decision tree is an NP-complete problem [Hyafil & Rivest '76, Hancock et al. '96]

The majority of decision tree inference algorithms are greedy algorithms (C4.5, ID3, CART, ...)

Recently, some algorithms have been proposed to infer optimal decision trees:

- [Narodytska et al. IJCAI-18] Inferring decision trees with a minimum number of nodes and consistent with the training dataset
- [Verwer et al. AAAI-19] Inferring decision trees with a given depth and with a minimum number of classification error on training dataset

In this work: Inferring decision trees with a **minimum depth** and consistent with the training dataset

Overview

2 Method

3 Benchmarks

Idea:

- Set the tree depth
- Assume the tree is balanced
- Use a SAT solver to assign each example to a leaf without creating conflict

Advantages:

- Since the structure of the tree is fixed, there is no need to learn it
- A binary coding can be assigned to each node, the semantics of which indicate the position of the node in the tree

Input: The maximum depth k of the tree to infer and the set of training examples $\mathcal{E} = {\mathcal{E}_0, \mathcal{E}_1, ..., \mathcal{E}_{c-1}}$

```
C := StructureConstraints()
while C is satisfiable do
Let T be a decision tree of a solution of C
if \mathcal{E} \subseteq T then
\mid return T
end
Let e \in \mathcal{E}_a be an example mislabeled by T
C := C \land FeatureConstraints(e) \land ClassConstraints(e, a)
end
```

return "No solution"

For each $i \in [0, 2^k - 1]$ and each class $a \in [0, c - 1]$, we have the clauses:

$$\neg C_{i,a} \lor U_i \tag{1}$$

For each $i \in [0, 2^k - 1]$ and each class $j \in [0, MaxNodes + 1]$, we have the clauses:

$$\neg H_{i,j} \lor H_{i+1,j} \tag{2}$$

For each $i \in [0, 2^k - 1]$ and each class $j \in [0, MaxNodes + 1]$, we have the clauses:

$$\neg U_i \lor \neg H_{i,j} \lor H_{i+1,j+1} \tag{3}$$

Finally, we assign the start and end of the counter H :

$$\neg H_{2^{k+1}, \lfloor MaxNodes/2 \rfloor + 2} \land H_{0,0} \tag{4}$$

leaves = # nodes + 1

leaves = # nodes + 1

Overview

Problem: Inferring decision trees with a **minimal number of nodes** without minimizing the depth

Algorithms evaluated:

- Algorithm DT1 from Naradytska et al. [IJCAI 2018]
- Algorithm **DT2** from Bessiere et co. [CP 2009]
- First version of our algorithm **DT**_depth¹
- Second version of our algorithm $\textbf{DT_size}^1$

¹Code available at: https://github.com/FlorentAvellaneda/InferDT/

Benchmark 1

Table 1: Benchmark for "Mouse" dataset (70 examples, 45 features, 2 classes)

Algo	Time (s)	Examples used	k	Nodes	acc.
DT2	577	70	4	15	83.5%
DT1	12.9	70	4	15	83.5%
DT_depth	0.015	33	4	31	85.8%
DT_size	0.075	37	4	15	83.5%

Table 2: Benchmark for "Car" dataset (1727 examples, 21 features, 2 classes)

Algo	Time (s)	Examples used	k	Nodes	acc.
DT1	684	173	7	23.67	55%
DT_depth	170	635	8	511	98.8%
DT_size	260	758	8	136	98.8%

Problem: Inferring decision trees with a given depth and with a **minimum number of classification error** on training dataset

Algorithms evaluated:

- Algorithm **BinOCT*** from Verwer and Zhang [AAAI 2019]
- Algorithm CART from sciki-learn with its default parameter setting
- Algorithm **OCT** from Bertsimas and Dunn [Machine Learning 2017]
- First version of our algorithm **DT_depth**
- Second version of our algorithm **DT_size**

Benchmark 2

Dataset	Examples	Features	Classes	
iris	150	114	3	
Monk1	124	17	2	
Monk2	169	17	2	
Monk3	122	17	2	
wine	178	1276	3	
balance	625	20	3	

DT_depth				DT_size			BinOCT*	CART	ОСТ
Dataset	time	acc.	k	time	acc.	n	acc.	acc.	acc.
	(sec.)			(sec.)					
iris	0.018	92.9%	3	0.03	93.2%	10.6	98.4%	92.4%	93.5%
Monk1	0.024	90.3%	4.4	0.08	95.5%	17	87.1%	76.8%	74.2%
Monk2	0.19	70.2%	5.8	9.1	74.0%	47.8	63.3%	63.3%	54.0%
Monk3	0.03	78.1%	4.8	0.21	82.6%	23.4	93.5%	94.2%	94.2%
wine	0.6	89.3%	3	1.2	92.0%	7.8	92.0%	88.9%	94.2%
balance	50	93.0%	8	183	92.6%	268	78.9%	77.5%	71.6%
Average		85.6%			88.3%		85.5%	82.18%	81.1%

Table 3: Benchmark comparing algorithms *DT_depth*, *DT_size*, *BinOCT**, *CART* and *OCT*.

Florent Avellaneda

Efficient Inference of Optimal Decision Trees

Problem: We randomly generated 1000 decision trees of depth 5, with 10 features and 2 classes and we used them to randomly generate learning examples. We check if the models we inferred are equivalent to the these generated decision trees.

Algorithms evaluated:

- Algorithm C4.5 implemented in the Weka tool under the name of J48
- First version of our algorithm **DT_depth**
- Second version of our algorithm **DT_size**

Figure 1: Chart of the average time and accuracy percentage

Overview

Method

3 Benchmarks

Conclusion

Result:

- Efficient algorithm for inferring optimal decision trees
- Incremental algorithm whose performance does not deteriorate with the number of observations
- Optimal decision trees on popular datasets

Future Works:

- Using alternative definitions of optimality
- Considering noisy data
- Improving performance

Thank you