Delegation-Relegation for Boolean Matrix Factorization

Florent Avellaneda and Roger Villemaire

Université du Québec à Montréal (UQAM)
AAAI 2024

UQÀM

Matrix Factorization Problem

Goal:

$$
M=\left|\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right|
$$

Find $A_{m \times k}$ and $B_{k \times n}$ such that $A \times B \approx M$

$$
(A \times B)_{i, j}=\sum_{\ell=1}^{k} A_{i, \ell} \times B_{\ell, j}
$$

Matrix Factorization Problem

Goal:

$$
M=\left|\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right| \quad \text { Find } A_{m \times k} \text { and } B_{k \times n} \text { such that } A \times B
$$

Example of a rank 2 factorization $(k=2)$:

$$
\left|\begin{array}{lll}
b_{0,0} & b_{0,1} & b_{0,2} \\
b_{1,0} & b_{1,1} & b_{1,2}
\end{array}\right|
$$

Constraints:

$$
\forall i, j: \sum_{\ell=0}^{k} a_{i, \ell} \times b_{\ell, j} \approx M_{i, j}
$$

Solution with SVD

$$
\begin{array}{r}
\left|\begin{array}{ccc}
0.5 & 0.7 & 0.5 \\
-0.7 & 0 & 0.7
\end{array}\right| \\
\left|\begin{array}{cc}
1.1 & 0.7 \\
1.7 & 0 \\
1.2 & -0.7
\end{array}\right|\left|\begin{array}{ccc}
0.11 & 0.84 & 1.09 \\
0.89 & 1.19 & 0.85 \\
1.09 & 0.84 & 0.11
\end{array}\right|
\end{array}
$$

Solution with SVD

$$
\begin{array}{r}
\left|\begin{array}{ccc}
0.5 & 0.7 & 0.5 \\
-0.7 & 0 & 0.7
\end{array}\right| \\
\left|\begin{array}{cc}
1.1 & 0.7 \\
1.7 & 0 \\
1.2 & -0.7
\end{array}\right|\left|\begin{array}{ccc}
0.11 & 0.84 & 1.09 \\
0.89 & 1.19 & 0.85 \\
1.09 & 0.84 & 0.11
\end{array}\right|
\end{array}
$$

Problems:

- No exact solution of rank 2

Solution with SVD

$$
\begin{aligned}
& \begin{array}{lll}
0.5 & 0.7 & 0.5
\end{array} \\
& \begin{array}{lll}
-0.7 & 0 & 0.7
\end{array} \\
& \begin{array}{|cc||ccc|l}
1.1 & 0.7 & 0.11 & 0.84 & 1.09 & \text { Alice } \\
1.7 & 0 & 0.89 & 1.19 & 0.85 & \text { Bob } \\
1.2 & -0.7 & 1.09 & 0.84 & 0.11 & \text { Charle }
\end{array}
\end{aligned}
$$

Problems:

- No exact solution of rank 2
- Poor interpretability of the factorization

Boolean Matrix Factorization Problem

Goal:

$$
M=\left|\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right|
$$

Find $A_{m \times k}$ and $B_{k \times n}$ such that $A \circ B=M$

$$
(A \circ B)_{i, j}=\bigvee_{\ell=1}^{\kappa} A_{i, \ell} \wedge B_{\ell, j}
$$

Boolean Matrix Factorization Problem

Goal:

$$
M=\left|\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right| \quad \text { Find } A_{m \times k} \text { and } B_{k \times n} \text { such that } A \circ B=M
$$

Example of a rank 2 factorization $(k=2)$:

$$
\left|\begin{array}{ll}
b_{0,0} & b_{0,1} \\
b_{0,2} \\
b_{1,0} & b_{1,1}
\end{array} b_{1,2}\right| \quad \text { Constraints: }
$$

$\left|\begin{array}{ll}\mathrm{a}_{0,0} & \mathrm{a}_{0,1} \\ \mathrm{a}_{1,0} & \mathrm{a}_{1,1} \\ \mathrm{a}_{2,0} & \mathrm{a}_{2,1}\end{array}\right|\left|\begin{array}{ccc}1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right|$

$$
\forall i, j: \bigvee_{\ell=0}^{k} a_{i, \ell} \wedge b_{\ell, j}=M_{i, j}
$$

Solution with BMF

$$
\begin{aligned}
& \left|\begin{array}{llll|l}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right| \\
& \left|\begin{array}{ll}
0 & 1 \\
1 & 1 \\
1 & 0
\end{array}\right| \\
& \left|\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0
\end{array}\right| \begin{array}{l}
\text { Alice } \\
\text { Bob } \\
\text { Charle }
\end{array}
\end{aligned}
$$

Solution with BMF

$$
\begin{aligned}
& \left|\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right|
\end{aligned}
$$

Advantages:

- Exact solution of rank 2

Solution with BMF

$$
\begin{aligned}
& \left|\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right|
\end{aligned}
$$

Advantages:

- Exact solution of rank 2
- Good interpretability of the factorization

A Boolean Matrix Factorization of order k involves covering all the 1 s with k blocks:

A Boolean Matrix Factorization of order k involves covering all the $1 s$ with k blocks:

Idea: The fewer the number of 1 s , the easier it should be to find a factorization.

A Boolean Matrix Factorization of order k involves covering all the $1 s$ with k blocks:

Idea: The fewer the number of 1 s , the easier it should be to find a factorization.

Remark: This idea has been introduced in a particular family of BMF algorithms based on formal concept analysis such as Iteress [Belohlavek, Outrata and Trnecka].

Delegation and Relegation Operators

| 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0 v

| 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |

0	0	1	1	1	1	1	1	0

1	1	1	1	1	1	1	1	1
1	1	0	0	0	0	0	1	1

Delegation and Relegation Operators

Definitions

Definition. A matrix $X_{m \times n}^{\prime}$ is existentially included in a matrix $X_{m \times n}$ (denoted $X^{\prime} \leq^{\exists} X$) if there is no i, j such that $X_{i, j}^{\prime}=1$ and $X_{i, j}=0$.

Definition. A matrix $X_{m \times n}^{\prime}$ is universally included in a matrix $X_{m \times n}$ (denoted $X^{\prime} \leq^{\forall} X$) if for all i, j, if $X_{i, j}=0$, then $X_{i, j}^{\prime}=0$.

Definition. A matrix $X_{m \times n}^{\prime}$ is consistent with a matrix $X_{m \times n}$ (denoted $X^{\prime} \simeq X$) if $X \leq^{\exists} X^{\prime}$ and $X^{\prime} \leq^{\exists} X$.

Delegation

We denote by $X^{v \downarrow w}$ the delegation of the line w to the line v in the matrix X, and by $X^{v \rightarrow w}$ the delegation of the column w to the column v in the matrix X.

$$
\begin{aligned}
& X_{i, j}^{v \downarrow w}=\left\{\begin{aligned}
0 & \text { if } i=v \text { and } X_{w, j}=0, \\
\emptyset & \text { if } i=w \text { and } X_{v, j}=1, \\
X_{i, j} & \text { otherwise. }
\end{aligned}\right. \\
& X_{i, j}^{v \rightarrow w}=\left\{\begin{aligned}
0 & \text { if } j=v \text { and } X_{i, w}=0, \\
\emptyset & \text { if } j=w \text { and } X_{i, v}=1, \\
X_{i, j} & \text { otherwise. }
\end{aligned}\right.
\end{aligned}
$$

Relegation

We denote by $A^{v \uparrow w}$ the relegation of the line w from the line v in the matrix A and by $B^{v \leftarrow w}$ the relegation of the column w from the column v in the matrix B.

$$
A_{i, j}^{v \uparrow w}=\left\{\begin{aligned}
1 & \text { if } i=w \text { and } A_{v, j}=1 \\
A_{i, j} & \text { otherwise }
\end{aligned}\right.
$$

$$
B_{i, j}^{v \leftarrow w}=\left\{\begin{aligned}
1 & \text { if } j=w \text { and } B_{i, v}=1, \\
B_{i, j} & \text { otherwise } .
\end{aligned}\right.
$$

Theorems

Theorem 1. Let v, w be such that $X_{v,:} \leq^{\exists} X_{w,:}$.

- If $(A \circ B) \simeq X^{v \downarrow w}$ then $\left(A^{v \uparrow w} \circ B\right) \simeq X$.
- If $(A \circ B) \simeq X^{v \rightarrow w}$ then $\left(A \circ B^{v \leftarrow w}\right) \simeq X$.

Theorem 2. Let v, w be such that $X_{v,:} \leq^{\forall} X_{w,:}$.

- $\left(A^{v \uparrow w} \circ B\right)$ is an optimal BMF for X if and only if $(A \circ B)$ is an optimal BMF for $X^{v \downarrow w}$.
- $\left(A \circ B^{v \leftarrow w}\right)$ is an optimal BMF for X if and only if $(A \circ B)$ is an optimal BMF for $X^{v \rightarrow w}$.

Algorithm

1	1	0	0	0	0	0	1	1
0	0	0	0	0	1	1	1	0
0	0	0	0	0	1	1	1	0
0	0	0	0	0	1	1	1	0
0	0	1	1	1	1	1	1	0
0	0	1	1	1	1	1	1	0
1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1
1	1	0	0	0	0	0	1	1

1	1	0	0	0	0	0	1	1
0	0	0	0	0	1	1	1	0
0	0	0	0	0				0
0	0	0	0	0				0
0	0	1	1	1				0
0	0							0
					1	1		
		0	0	0	0	0		

Delegation

1		0	0	0	0	0		
0	0	0	0	0	1		1	0
0	0	0	0	0				0
0	0	0	0	0				0
0	0	1						0
0	0							0
					1			0
		0	0	0	0			

1	0	0	0	0	0	0	0	0
0	0	0	0	0	1	0	1	0
0	0	1	1	0	0	0	0	0

| 1 | 0 | 0 | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 0 | | | | | | |
| 0 | 1 | 0 | | | | | | |
| 0 | 1 | 0 | | | | | | |
| 0 | 1 | 1 | | | | | | |
| 0 | 1 | 1 | | | | | | |
| 1 | 1 | 1 | | | | | | |
| 1 | 1 | 1 | | | | | | |
| 1 | 0 | 0 | | | | | | |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |\quad Relegation

1	0	0
0	1	0
0	1	0
0	0	0
0	0	1
0	0	1
0	1	0
0	0	0
0	0	0

0	0	0	0	-1	-1	0	0	0
0	-1	-1	0	0	0	-1	0	0
-1	0	0	0	0	0	0	0	0

1		0	0	0	0	0		
0	0	0	0	0	1		1	0
0	0	0	0	0				0
0	0	0	0	0				
0	0	1						0
0	0							0
					1			0
			0	0	0	0	0	

Benchmark

We conducted an evaluation of our methods, Simpli ${ }^{\exists}$ and Simpli ${ }^{\forall}$, on well-established datasets from the literature [UCI].

We focusing on two key aspects: the degree of simplification they achieve and their effect on the time savings when performing factorizations on the simplified matrices using existing constraint-based BMF solvers:

- CG [Kovacs, Gunluk and Hauser]
- OptiBlock [Avellaneda and Villemaire]

Dataset	Characteristics		\# ones after simplify		
	Size	\# Ones	Iteress	Simpli ${ }^{\forall}$	Simpli ${ }^{\text { }}$
Advert.	3279×1557	45139	5941	$\underline{3942}$	705
Chess	3196×39	25582	368	780	38
DNA	4590×392	26527	1556	539	367
Firewa.	365×709	31951	2744	88	65
Flare	1066×43	9283	2928	$\underline{1950}$	428
Heart	270×382	3036	325	1459	270
IRis	150×126	750	502	515	486
Lymph	148×54	1823	$\underline{1288}$	1543	1283
Paleo	501×139	3537	$\underline{284}$	1853	139
Student	395×176	9254	$\underline{8488}$	8517	8470
Thorac.	470×340	3376	$\underline{2373}$	2439	2310
Tictac.	958×28	8954	8954	8954	8954
Wine	178×1279	2492	816	190	178
Zoo	101×28	640	85	108	25

Dataset	BMF with CG : time (rank)			
	Original	Iteress	Simpli ${ }^{\forall}$	Simpli ${ }_{0}{ }^{\text {a }}$
Advert.	3h (1556)	3h (1596)	3h (1556)	3h (704)
Chess	3h (38)	1s (38)	20m (38*)	1s (38)
DNA	1m (392)	$3 \mathrm{~h} \mathrm{(368)}$	3h (384)	5m(367)
Firewa.	3h (64)	9m (65)	1h (64*)	1s (65)
Flare	2m (43)	3h (42)	1h (42*)	3h (42)
Heart	3h (270)	9m(270)	3h (270)	9m(270)
IRIS	10m (121*)	8m (121)	10m (121*)	9 m (121)
Lymph	3h (52)	20m (53)	3h (52*)	40m (53)
Paleo	3h (139)	1s (139)	3h (139)	1s (139)
Student	3h (176)	3h (176)	3h (176)	3h (176)
Thorac.	3h (304)	3h (304)	3h (304)	3h (304)
Tictac.	3h (28)	3h (28)	3h (28)	3h (28)
Wine	3h (178)	20s (178)	4m (178*)	20s (178)
Zoo	3h (25)	1s (25)	3h (25*)	1s (25)

Data	BMF with OptiBlock : time (rank)			
	Original	Simpli ${ }^{\forall}$	Iteress	Simplif
Advert.	3h (794)	3h (749)	3h (711)	3h (703)
Chess	1m (38)	20s (38)	10s (38)	10s (38)
DNA	3h (497)	3h (373)	1h (368)	1h (367)
Firewa.	2m (64)	1m (64)	30s (65)	30s (65)
Flare	14s (42)	14s (42)	4s (42)	4s (42)
Heart	90 m (270)	90m (270)	2m (270)	2m (270)
IRIS	10s (121)	10s (122)	10s (122)	20s (122)
Lymph	5s (54)	6s (54)	3s (55)	3s (54)
Paleo.	$4 \mathrm{~m}(139)$	2m (139)	30s (139)	30s (139)
Student	6m (176)	6 m (176)	5 m (177)	4m (176)
Thorac.	10m (304)	20m (306)	20m (306)	$\underline{20 \mathrm{~m}(305)}$
Tictac.	3s (28)	3s (28)	3s (28)	3s (28)
Win.	6 m (178)	2m (178)	2m (178)	2m (178)
Zoo	1s (25)	1s (25)	1s (25)	1s (25)

