Delegation-Relegation for Boolean Matrix Factorization

Florent Avellaneda and Roger Villemaire

Université du Québec à Montréal (UQAM)

AAAI 2024

Matrix Factorization Problem

$M = \begin{vmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{vmatrix}$ Find $A_{m \times k}$ and $B_{k \times n}$ such that $A \times B \approx M$ $(A \times B)_{i,j} = \sum_{\ell=1}^{k} A_{i,\ell} \times B_{\ell,j}$

Matrix Factorization Problem

 $M = \begin{vmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{vmatrix}$ Find $A_{m \times k}$ and $B_{k \times n}$ such that $A \times B \approx M$ $(A \times B)_{i,j} = \sum_{\ell=1}^{k} A_{i,\ell} \times B_{\ell,j}$

Example of a rank 2 factorization (k = 2):

 $\begin{vmatrix} b_{0,0} & b_{0,1} & b_{0,2} \\ b_{1,0} & b_{1,1} & b_{1,2} \end{vmatrix}$ Constraints: $\begin{vmatrix} a_{0,0} & a_{0,1} \\ a_{1,0} & a_{1,1} \\ a_{2,0} & a_{2,1} \end{vmatrix} \begin{vmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{vmatrix}$ $\forall i,j : \sum_{\ell=0}^{k} a_{i,\ell} \times b_{\ell,j} \approx M_{i,j}$

Solution with $\ensuremath{\mathsf{SVD}}$

Solution with SVD

Problems:

• No exact solution of rank 2

Solution with SVD

Problems:

- No exact solution of rank 2
- Poor interpretability of the factorization

Florent Avellaneda

Delegation-Relegation for BMF

Boolean Matrix Factorization Problem

 $M = \begin{vmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{vmatrix}$ Find $A_{m \times k}$ and $B_{k \times n}$ such that $A \circ B = M$ $(A \circ B)_{i,j} = \bigvee_{\ell=1}^{k} A_{i,\ell} \wedge B_{\ell,j}$

Boolean Matrix Factorization Problem

 $M = \begin{vmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{vmatrix}$ Find $A_{m \times k}$ and $B_{k \times n}$ such that $A \circ B = M$ $(A \circ B)_{i,j} = \bigvee_{\ell=1}^{k} A_{i,\ell} \wedge B_{\ell,j}$

Example of a rank 2 factorization (k = 2):

 $\begin{vmatrix} b_{0,0} & b_{0,1} & b_{0,2} \\ b_{1,0} & b_{1,1} & b_{1,2} \end{vmatrix}$ Constraints : $\begin{vmatrix} a_{0,0} & a_{0,1} \\ a_{1,0} & a_{1,1} \\ a_{2,0} & a_{2,1} \end{vmatrix} \begin{vmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{vmatrix}$ $\forall i, j : \bigvee_{\ell=0}^{k} a_{i,\ell} \land b_{\ell,j} = M_{i,j}$

Solution with BMF

Solution with BMF

Advantages:

• Exact solution of rank 2

Solution with BMF

Advantages:

- Exact solution of rank 2
- Good interpretability of the factorization

Florent Avellaneda

Delegation-Relegation for BMF

A Boolean Matrix Factorization of order k involves covering all the 1s with k blocks:

	$\begin{array}{c} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\$	1 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 1 1 1 1 0	1 1 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0	
1 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1	$\begin{array}{c} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$			

A Boolean Matrix Factorization of order k involves covering all the 1s with k blocks:

Idea: The fewer the number of 1s, the easier it should be to find a factorization.

A Boolean Matrix Factorization of order k involves covering all the 1s with k blocks:

Idea: The fewer the number of 1s, the easier it should be to find a factorization.

Remark: This idea has been introduced in a particular family of BMF algorithms based on *formal concept analysis* such as Iteress [Belohlavek, Outrata and Trnecka].

Definitions

Definition. A matrix $X'_{m \times n}$ is existentially included in a matrix $X_{m \times n}$ (denoted $X' \leq \exists X$) if there is no i, j such that $X'_{i,j} = 1$ and $X_{i,j} = 0$.

Definition. A matrix $X'_{m \times n}$ is universally included in a matrix $X_{m \times n}$ (denoted $X' \leq^{\forall} X$) if for all i, j, if $X_{i,j} = 0$, then $X'_{i,j} = 0$.

Definition. A matrix $X'_{m \times n}$ is *consistent* with a matrix $X_{m \times n}$ (denoted $X' \simeq X$) if $X \leq \exists X'$ and $X' \leq \exists X$.

Delegation

We denote by $X^{v\downarrow w}$ the *delegation* of the line w to the line v in the matrix X, and by $X^{v\rightarrow w}$ the *delegation* of the column w to the column v in the matrix X.

$$X_{i,j}^{\nu\downarrow w} = \begin{cases} 0 & \text{if } i = v \text{ and } X_{w,j} = 0, \\ \emptyset & \text{if } i = w \text{ and } X_{v,j} = 1, \\ X_{i,j} & \text{otherwise.} \end{cases}$$

$$X_{i,j}^{v \to w} = \begin{cases} 0 & \text{if } j = v \text{ and } X_{i,w} = 0, \\ \emptyset & \text{if } j = w \text{ and } X_{i,v} = 1, \\ X_{i,j} & \text{otherwise.} \end{cases}$$

Relegation

We denote by $A^{v\uparrow w}$ the *relegation* of the line w from the line v in the matrix A and by $B^{v\leftarrow w}$ the *relegation* of the column w from the column v in the matrix B.

$$A_{i,j}^{v \uparrow w} = \begin{cases} 1 & \text{if } i = w \text{ and } A_{v,j} = 1, \\ A_{i,j} & \text{otherwise.} \end{cases}$$

$$B_{i,j}^{v \leftarrow w} = \begin{cases} 1 & \text{if } j = w \text{ and } B_{i,v} = 1, \\ B_{i,j} & \text{otherwise.} \end{cases}$$

Theorems

Theorem 1. Let v, w be such that $X_{v,:} \leq^{\exists} X_{w,:}$.

- If $(A \circ B) \simeq X^{v \downarrow w}$ then $(A^{v \uparrow w} \circ B) \simeq X$.
- If $(A \circ B) \simeq X^{v \to w}$ then $(A \circ B^{v \leftarrow w}) \simeq X$.

Theorem 2. Let v, w be such that $X_{v,:} \leq^{\forall} X_{w,:}$.

- (A^{v↑w} ∘ B) is an optimal BMF for X if and only if (A ∘ B) is an optimal BMF for X^{v↓w}.
- (A ∘ B^{v←w}) is an optimal BMF for X if and only if (A ∘ B) is an optimal BMF for X^{v→w}.

Algorithm

We conducted an evaluation of our methods, Simpli^{\exists} and Simpli^{\forall}, on well-established datasets from the literature [UCI].

We focusing on two key aspects: the degree of simplification they achieve and their effect on the time savings when performing factorizations on the simplified matrices using existing constraint-based BMF solvers:

- CG [Kovacs, Gunluk and Hauser]
- OptiBlock [Avellaneda and Villemaire]

Dataset	Characteristics		# ones after simplify		
	Size	# Ones	Iteress	Simpli^\forall	Simpli^\exists
Advert.	3279×1557	45139	5941	3942	705
CHESS	3196×39	25582	<u>368</u>	780	38
DNA	$4590{ imes}392$	26527	1556	539	367
FIREWA.	365×709	31951	2744	<u>88</u>	65
FLARE	1066×43	9283	2928	1950	428
HEART	270×382	3036	325	1459	270
Iris	150×126	750	502	515	486
Lymph	148×54	1823	<u>1288</u>	1543	1283
Paleo	501×139	3537	284	1853	139
Student	395×176	9254	<u>8488</u>	8517	8470
THORAC.	470×340	3376	$\underline{2373}$	2439	2310
TICTAC.	$958{ imes}28$	8954	8954	8954	8954
WINE	178×1279	2492	816	<u>190</u>	178
Zoo	$101{\times}28$	640	$\underline{85}$	108	25

Dataset	BMF with CG : time (rank)					
	Original	Iteress	$\mathrm{Simpli}^{\forall}$	$\mathrm{Simpli}_0^\exists$		
Advert.	3h~(1556)	3h (1596)	3h~(1556)	3h (704)		
CHESS	3h(38)	1s(38)	20m (38*)	1s(38)		
DNA	1 m (392)	3h(368)	3h(384)	5 <mark>m (367</mark>)		
FIREWA.	3h(64)	9m (65)	1h (64*)	1s(65)		
FLARE	$\overline{2m}$ (43)	3h(42)	1h (42*)	3h(42)		
HEART	3h(270)	9m (270)	3h(270)	9m (270)		
Iris	10m (121*)	8m (121)	10m (121*)	9m (121)		
Lymph	3h(52)	$20 {\sf m}~(53)$	3h (52*)	$40 {\sf m} (53)$		
Paleo	$\overline{3h}$ (139)	1s (139)	3h (139)	1s (139)		
Student	3h (176)	3h (176)	3h (176)	3h (176)		
THORAC.	3h (304)	3h (304)	3h (304)	3h (304)		
TICTAC.	3h (28)	3h (28)	3h (28)	3h (28)		
WINE	3h~(178)	20s~(178)	4m (178*)	20s~(178)		
Zoo	3h(25)	$1s\ (25)$	3h (25*)	$1s\ (25)$		

Data	BMF with OptiBlock : time (rank)					
	Original	Simpli^\forall	Iteress	$\mathrm{Simpli}_0^\exists$		
Advert.	3h(794)	3h(749)	3h(711)	3h (703)		
CHESS	1 m (38)	20s (38)	10s (38)	10s (38)		
DNA	3h(497)	3h(373)	1h (368)	1h (367)		
FIREWA.	2m(64)	1m (64)	30s(65)	30s~(65)		
FLARE	$\overline{14s}$ (42)	14s(42)	4s (42)	4s (42)		
Heart	90m (270)	90m (270)	2m (270)	2m (270)		
Iris	10s (121)	10s (122)	10s(122)	20s (122)		
Lymph	5s(54)	6s(54)	3s(55)	3s (54)		
Paleo.	4m (139)	2m (139)	30s (139)	30s (139)		
Student	6m (176)	6m(176)	5m(177)	4m (176)		
THORAC.	10m (304)	20m(306)	20m(306)	20m(305)		
TICTAC.	3s (28)	3s (28)	3s (28)	3s (28)		
WIN.	6m(178)	2m (178)	2m (178)	2m (178)		
Zoo	1s (25)	1s (25)	1s (25)	1s (25)		