
Solving Language Equations using
Flanked Automata

Florent Avellaneda1, Silvano Dal Zilio2, and Jean-Baptiste Raclet3

1 CRIM Montréal, Canada
2 LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France

3 IRIT, Université de Toulouse, CNRS, Toulouse, France

Abstract. We define a new subclass of nondeterministic finite automata
for prefix-closed languages called Flanked Finite Automata (FFA). Our
motivation is to provide an efficient way to compute the quotient and
inclusion of regular languages without the need to determinize the un-
derlying automata. These operations are the building blocks of several
verification algorithms that can be interpreted as language equation solv-
ing problems. We provide a construction for computing a FFA accepting
the quotient and product of languages that is compositional and that
does not incur an exponential blow up in size. This makes flanked au-
tomata a good candidate as a formalism for compositional design and
verification of systems.

1 Introduction

A very common problem in system design is to solve equations of the form
C ‖ X � G, where C is the specification of a given system and G is the overall
behavior (the goal) that we want to implement. The objective is to compute a
subsystem X that, when composed with C, produces a system which conforms to
the specification G. We are generally interested in the maximal solution. When
it exists, this solution is denoted G/C, also called the quotient of G by C.

Solving language equations is a problem that appears in many different do-
mains, with different choices for the composition operator (‖) and for the confor-
mance relation (�). For example, this problem has been studied by the discrete-
event systems community under the name controller synthesis [19]. In other
works, finding X is sometimes referred to as computing a protocol converter or
an adaptor [24]. In this context, the goal is to correct some mismatches between
a set of n interacting subsystems in order to satisfy a compatibility property
(deadlock freeness, for instance) specified by G. Likewise, the quotient G/C can
be seen as the implementation of a subsystem that needs to realize a given spec-
ification G while reusing a trustworthy off-the-shelf component C [18]. Finally,
computing the language quotient is a stepping stone to verify contract satisfac-
tion [6]. The links between all these problems has been clearly highlighted in the
literature [23, 11].

Our interest in the quotient operator is motivated by our interest in contract-
based design. Contracts have recently been identified as a key element for the



modular design of complex systems [7]. Fundamentally, a contract for a system
S can be viewed as a pair (A,G) of two specification requirements, where A is
an assumption on the environment where S executes and G is a guarantee on
the behavior of the system (given that the assumptions in A are met). Namely,
with our notations, the pair (A,G) is a contract for S if and only if A ‖ S � G.
In this case, when we fix the guarantee G, the best possible assumption is given
by the quotient G/S.

Contracts, and the use of the quotient operator, arises naturally in the con-
text of compositional verification. For example, when we consider the simplest
instance of the Assume-Guarantee law (see for example [12]):

A ‖ P1 � G P2 � A
P1 ‖ P2 � G

then a natural choice for the assumption A is to find a contract of the form (A,G)
for P1. Also, the quotient operator is central when computing the contract of
a compound system P1 ‖ P2. Indeed, if (A1, G1) and (A2, G2) are contracts for
the processes P1, P2, then a sensible contract for P1 ‖ P2 is given by the pair
(A1/G2 ∧A2/G1, G1 ‖ G2). As a consequence, it is clear that any tool based on
the use of contract theory needs to compute quotients efficiently.

In this paper, we propose a new method to compute the quotient and com-
position of two or more specifications in a compositional way. We describe our
approach by choosing the simplest possible instantiation for the language equa-
tion problem. We consider that the semantics of a system is given by a regular
and prefix-closed set of traces. Likewise, we use language intersection for the
composition of systems (‖) and language inclusion for conformance (�). In this
simple context, the quotient of two prefix-closed regular languages G/C can be
defined as the regular language G ∪ C, where C is the smallest prefix-closed
language that includes the complement of C. While we concentrate on regular
languages in this paper, our approach can be extended to more general compo-
sition operators, like synchronous product, and to more complex formalisms.

Contributions. Since we want to solve a problem on regular languages, the
simplest choice would be to select either deterministic (DFA) or nondeterministic
finite automata (NFA); but this is not satisfying. While the problems of checking
universality or language inclusion are known to be computationally easy for DFA,
they are PSPACE-complete for NFA. On the other hand, the size of a NFA can
be exponentially smaller than the size of an equivalent minimal DFA. This gap
in complexity between the two models can be problematic in practice. This is
the case when using finite state automata for system verification, where we need
to manipulate a very large number of states.

To solve this problem, we need an extension of finite automata that share
the same complexity properties as DFA while being, as much as possible, as
succinct as NFA. In this paper, we define a new class of finite state automata
called Flanked Finite Automata (FFA) that has good complexity and closure
properties. With our approach, it is possible to efficiently compute the quotient



of two languages without relying on the use of deterministic automata or on
the determinization of automata. We also prove that FFA can be exponentially
more succinct than an equivalent DFA. We give some examples of the gain of
performance brought by this new approach with a simple use case (Sect. 6).

In Sect. 3, we show that the universality problem for FFA is in linear-time
while testing the language inclusion between two FFA A and B is in time
O(|A| · |B|). In Sect. 4, we define several operations on FFA. In particular we
describe how to compute a flanked automaton for the intersection, union and
quotient of two languages defined by FFA. The benefit of our encoding is that
the composition of two FFA, A and B, has always less than (|A|+ 1) · (|B|+ 1)
states. Moreover the resulting automaton is still flanked. Therefore it is possible
to compute the successive composition and quotient of different specifications
A1, . . . , An in time O(|A1| · . . . · |An|).

Finally, we prove that FFA are strictly more concise than DFA. Indeed, on
the one hand, every DFA can be easily extended into a FFA with the same
set of states and transitions. On the other hand, in Sect. 5, we give an exam-
ple of (a family of) regular languages that can be accepted by FFA which are
exponentially more succinct than their equivalent minimal DFA.

Our main motivation for introducing a new extension of NFA is to provide
an efficient way to compute the quotient of two regular languages. We believe
that our work provides the first algorithm for computing the quotient of two
regular languages without using determinization and without suffering from an
exponential blow up of the result. Our approach can be slightly modified to
support other kinds of composition operators, like for instance the synchronous
product of languages, instead of simply language intersection. It can also be easily
extended to take into account the addition of modalities [18]. We also believe
that the notion of “flanked relation” can be easily applied to other settings, like
for example tree automata. For instance, the prototype implementation of our
algorithms can also handle trace languages generated by “flanked” Petri nets.

2 Notations and Definitions

A finite automaton is a tuple A = (Q,Σ,E,Qin) where: Q is a finite set of states;
Σ is the alphabet of A (that is a finite set of symbols); E ⊆ Q × Σ × Q is the
transition relation; and Qin ⊆ Q is the set of initial states. In the remainder of
this text, we assume that every state is final, hence we do not need a distinguished
subset of accepting states. Without loss of generality, we also assume that every
state in Q is reachable in A from Qin following a sequence of transitions in E.

For every word u ∈ Σ∗ we denote A(u) the subset of states in Q that can be
reached when trying to accept the word u from an initial state in the automaton.
We can define the set A(u) by induction on the word u. We assume that ε is
the empty word and we use the notation u a for the word obtained from u by
concatenating the symbol a ∈ Σ. Then A(ε) = Qin and A(u a) = {q′ | ∃q ∈
A(u).(q, a, q′) ∈ E}. By extension, we say that a word u is accepted by A,
denoted u ∈ A, if the set A(u) is not empty.



Definition 1. A Flanked Finite Automaton (FFA) is a pair (A, F ) where A =
(Q,Σ,E,Qin) is a finite automaton and F : Q×Σ is a “flanking relation” that
associates symbols of Σ to states of A. We also require the following relation
between A and F :

∀u ∈ Σ∗, a ∈ Σ.
(

(u ∈ A ∧ u a /∈ A)⇔ ∃q ∈ A(u).(q, a) ∈ F
)

(F?)

We will often use the notation q
a→ q′ when (q, a, q′) ∈ E. Likewise, we use the

notation q
a9 when (q, a) ∈ F .

With our condition that every state of an automaton is final, the relation
q

a→ q′ states that every word u “reaching” q in A can be extended by the symbol
a, meaning that u a is also accepted by A. Conversely, the relation q

a9 states
that the word u a is not accepted. Therefore, in a FFA (A, F ), when q ∈ A(u)
and (q, a) ∈ F , then we know that the word u cannot be extended with a. In
other words, the flanking relation gives information on the “frontier” of a prefix-
closed language—the extreme limit over which words are no longer accepted by
the automaton—hence the use of the noun flank to describe this class.

In the rest of the paper, we simply say that the pair (A, F ) is flanked when
condition (F?) is met. We also say that the automaton A is flankable if there
exist a flanking relation F such that (A, F ) is flanked.

Testing if a Pair (A, F ) is Flanked. We can use the traditional Rabin-Scott
powerset construction to test whether F flanks the automatonA = (Q,Σ,E,Qin).
We build from A the “powerset automaton” ℘(A), a DFA with alphabet Σ and
with states in 2Q (also called classes) that are the sets of states in Q reached
after accepting a given word prefix; that is all the sets of the form A(u). The
initial state of ℘(A) is the class A(ε) = Qin. Finally, we have that C

a→ C ′ in
℘(A) if and only if there is q ∈ C and q′ ∈ C ′ such that q

a→ q′.
Let F−1(a) be the set {q | q a9} of states that “forbids” the symbol a after a

word accepted by A. Then the pair (A, F ) is flanked if, for every possible symbol
a ∈ Σ and for every reachable class C ∈ ℘(A) we have: C ∩ F−1(a) 6= ∅ if and
only if there is no class C ′ such that C

a→ C ′.
This construction suggests that checking if a pair (A, F ) is flanked should be

a costly operation, that is, it should be as complex as exploring a deterministic
automaton equivalent to A. In Sect. 3 we prove that this problem is actually
PSPACE-complete.

Testing if a NFA is Flankable. It is easy to show that the class of FFA
includes the class of deterministic finite state automata; meaning that every DFA
is flankable. If an automaton A is deterministic, then it is enough to choose the
“flanking relation” F such that, for every state q in Q, we have q

a9 if and only
if there are no transitions of the form q

a→ q′ in A. DFA are a proper subset of
FFA; indeed we give examples of NFA that are flankable in Sect. 5.

On the other hand, if an automaton is not deterministic, then in some cases
it is not possible to define a suitable flanking relation F . For example, consider
the automaton from Fig. 1 and assume, by contradiction, that we can define a



flankable relation F for this automaton. The word b is accepted by A but the
word b b is not, so by definition of FFA (see eq. (F?)), there must be a state
q ∈ A(b) such that q

b9. Hence, because q1 is the only state in A(b), we should
necessarily have q1

b9. However, this contradicts the fact that the word a b is in
A, since q1 is also in A(a).

q0

q1 q2

q3

a
b a

b

{q0}

{q1}

{q1, q2} {q3}

b

a
b

Fig. 1: A non-flankable NFA (left) and its associated Rabin-Scott powerset con-
struction (right).

More generally, it is possible to define a necessary and sufficient condition
for the existence of a flanking relation; this leads to an algorithm for testing
if an automaton A is flankable. Let A−1(a) denote the set of states reachable
by words that can be extended by the symbol a (remember that we consider
prefix-closed languages): A−1(a) =

⋃
{A(u) | u a ∈ A}.

It is possible to find a flanking relation F for the automaton A if and only
if, for every word u ∈ A such that u a /∈ A, the set A(u) \ A−1(a) is not empty.
Indeed, in this case, it is possible to choose F such that (q, a) ∈ F as soon as
there exists a word u with q ∈ A(u) \ A−1(a). Conversely, an automaton A is
not flankable if we can find a word u ∈ A such that u a /∈ A and A(u) ⊆ A−1(a).
For example, for the automaton in Fig. 1, we have A−1(b) = {q0, q1, q2} while
b b /∈ A and A(b) = {q1}. As in the previous section, this condition can be
checked directly using the powerset construction.

3 Complexity Results for Basic Problems

In this section we give some results on the complexity of basic operations over
FFA. Complete proofs can be found in an extended version of this paper [2].

Theorem 1. The universality problem for FFA is decidable in linear time.

Proof. It is enough to prove that a FFA (A, F ) is universal if and only if the
relation F is empty; meaning that for all states q ∈ Q it is not possible to find a
symbol a ∈ Σ such that q

a9. As a consequence, to test whether A is universal, it
is enough to check whether there is a state q ∈ Q that is mapped to a non-empty
set of symbols in F . Note that, given a different encoding of F , this operation
could be performed in constant time. ut



We can use this result to settle the complexity of testing if an automaton is
flankable.

Theorem 2. Given an automaton A = (Q,Σ,E,Qin) and a relation F ∈ Q×Σ,
the problem of testing if (A, F ) is a flanked automaton is PSPACE-complete
when there are at least two symbols in Σ.

Proof. We can define a simple nondeterministic algorithm for testing if (A, F ) is
flanked. We recall that the relation F−1(a) stands for the set {q | q a9} of states
that “forbid” the symbol a. As stated in Sect. 2, to test if (A, F ) is flanked, we
need, for every symbol a ∈ Σ, to explore the classes C in the powerset automaton
of A and test whether C

a→ C ′ in ℘(A) and whether C ∩ F−1(a) = ∅ or not.
These tests can be performed using |Q| bits since every class C and every set
F−1(a) is a subset of Q. Moreover there are at most 2|Q| classes in ℘(A). Hence,
using Savitch’s theorem, the problem is in PSPACE.

On the other way, we can reduce the problem of testing the universality of a
NFA A to the problem of testing if a pair (A, ∅) is flanked (where ∅ stands for
the “empty” flanking relation over Q × Σ). The universality problem is known
to be PSPACE-hard when the alphabet Σ is of size at least 2, even if all the
states of A are final [16]. Hence our problem is also PSPACE-hard. ut

To conclude this section, we prove that the complexity of checking language
inclusion between a NFA and a FFA is in polynomial time. We say that the
language of A1 is included in A2, simply denoted A1 ⊆ A2, if all the words
accepted by A1 are also accepted by A2.

Theorem 3. Given a NFA A1 and a FFA (A2, F2), we can test whether A1 ⊆
A2 in polynomial time.

Proof. Without loss of generality, we can assume that A1 = (Q1, Σ,E1, I1) and
A2 = (Q2, Σ,E2, I2) are two NFA over the same alphabet Σ. We define a variant
of the classical product construction between A1 and A2 that also takes into
account the “pseudo-transitions” q

a9 defined by the flanking relations.

We define the product of A1 and (A2, F2) as the NFA A = (Q,Σ,E, I) such
that I = I1 × I2 and Q = (Q1 × Q2) ∪ {⊥}. The extra state ⊥ will be used to
detect an “error condition”, that is a word that is accepted by A1 and not by
A2. The transition relation of A is such that:

– if q1
a→ q′1 in A1 and q2

a→ q′2 in A2 then (q1, q2)
a→ (q′1, q

′
2) in A;

– if q1
a→ q′1 in A1 and q2

a9 in A2 then (q1, q2)
a→ ⊥ in A

The result follows from the fact that A1 is included in A2 if and only if the
state ⊥ is not reachable in A. (Actually, we can prove that any word u such
that ⊥ ∈ A(u) is a word accepted by A1 and not by A2.) Since we cannot
generate more than |Q1| · |Q2| reachable states in A before finding the error ⊥,
this algorithm is solvable in polynomial time. ut



4 Closure Properties of Flanked Automata

In this section, we study how to compute the composition of flanked automata.
We prove that the class of FFA is closed by language intersection and by the
“intersection adjunct”, also called quotient. On a negative side, we show that
the class is not closed by non-injective relabeling.

We consider the problem of computing a flanked automaton accepting the
intersection of two prefix-closed, regular languages. More precisely, given two
FFA (A1, F1) and (A2, F2), we want to compute a FFA (A, F ) that recognizes
the set of words accepted by both A1 and A2, denoted simply A1 ∩ A2.

Theorem 4. Given two FFA (A1, F1) and (A2, F2), we can compute a FFA
(A, F ) for the language A1 ∩ A2 in polynomial time. The NFA A has size less
than |A1| · |A2|.

Proof. We define a classical product construction between A1 and A2 and show
how to extend this composition on the flanking relations. We assume that Ai is
an automaton (Qi, Σ,Ei, Ii) for i ∈ {1, 2}.

The automaton A = (Q,Σ,E, I) is defined as the synchronous product of
A1 and A2, that is: Q = Q1 × Q2; I = I1 × I2; and the transition relation is
such that (q1, q2)

a→ (q′1, q
′
2) in A if both q1

a→ q′1 in A1 and q2
a→ q′2 in A2. It is

a standard result that A accepts the language A1 ∩ A2.
The flanking relation F is defined as follows: for each accessible state (q1, q2) ∈

Q, we have (q1, q2)
a9 if and only if q1

a9 in A1 or q2
a9 in A2. What is left to

prove is that (A, F ) is flanked, that is, we show that condition (F?) is correct:

– assume u is accepted by A and u a is not; then there is a state q = (q1, q2) in
A such that q ∈ A(u) and (q, a) ∈ F . By definition of A, we have that u is
accepted by both A1 and A2, while the word u a is not accepted by at least
one of them. Assume that u a is not accepted by A1. Since F1 is a flanking
relation for A1, we have by equation (F?) that there is at least one state
q1 ∈ A1 such that (q1, a) ∈ F1; and therefore (q, a) ∈ F , as required.

– assume there is a reachable state q = (q1, q2) in A such that q ∈ A(u) and
(q, a) ∈ F ; then u is accepted by A. We show, by contradiction, that u a
cannot be accepted by A, that is u a /∈ A1 ∩ A2. Indeed, if so, then u a will
be accepted both by A1 and A2 and therefore we will have (q1, a) /∈ F1 and
(q2, a) /∈ F2, which contradicts the fact that (q, a) ∈ F . ut

Next we consider the adjunct of the intersection operation, denoted A1/A2.
This operation, also called quotient, is defined as the biggest prefix-closed lan-
guage X such that A2 ∩X ⊆ A1. Informally, X is the solution to the following
question: what is the biggest set of words x such that x is either accepted by A1

or not accepted by A2. Therefore the language A1/A2 is always defined (and not
empty, since it contains at least the empty word ε). Actually, the quotient can
be interpreted as the biggest prefix-closed language included in the set L1 ∪ L̄2,
where L1 is the language accepted by A1 and L̄2 is the complement of the
language of A2.



The quotient operation can also be defined by the following two axioms:

(Ax1) A2 ∩ (A1/A2) ⊆ A1

(Ax2) ∀X.A2 ∩X ⊆ A1 ⇒ X ⊆ A1/A2

The quotient operation is useful when trying to solve language equations
problems [22] and has applications in the domain of system verification and
synthesis. For instance, we can find a similar operation in the contract framework
of Benveniste et al. [6] or in the contract framework of Bauer et al. [4].

Our results on FFA can be used for the simplest instantiation of these frame-
works that considers a simple trace-based semantics where the behavior of sys-
tems is given as a regular set of words; composition is language intersection; and
implementation conformance is language inclusion. Our work was motivated by
the fact that there are no known efficient methods to compute the quotient. In-
deed, to the best of our knowledge, all the approaches rely on the determinization
of NFA, which is very expensive in practice [18, 22].

Our definitions of quotient could be easily extended to replace language in-
tersection by synchronous product and to take into account the addition of
modalities [18].

Theorem 5. Given two FFA (A1, F1) and (A2, F2), we can compute a FFA
(A, F ) for the quotient language A1/A2 in polynomial time. The NFA A has
size less than |A1| · |A2|+ 1

Proof. Without loss of generality, we can assume that A1 = (Q1, Σ,E1, I1) and
A2 = (Q2, Σ,E2, I2) are two NFA over the same alphabet Σ. Like in the con-
struction for testing language inclusion, we define a variant of the classical prod-
uct construction between A1 and A2 that also takes into account the flanking
relations.

We define the product of (A1, F1) and (A2, F2) as the NFA A = (Q,Σ,E, I)
such that I = I1 × I2 and Q = (Q1 ×Q2)∪ {>}. The extra state > will be used
as a sink state from which every suffix can be accepted. The transition relation
of A is such that:

– if q1
a→ q′1 in A1 and q2

a→ q′2 in A2 then (q1, q2)
a→ (q′1, q

′
2) in A;

– if q2
a9 in A2 then (q1, q2)

a→ > in A for all states q1 ∈ Q1

– > a→ > for every a ∈ Σ

Note that we do not have a transition rule for the case where q1
a9 in A1

and q2
a→ q′2; this models the fact that a word “that can be extended” in A2 but

not in A1 cannot be in the quotient A1/A2. It is not difficult to show that A
accepts the language A1/A2. We give an example of the construction in Fig. 2.

Next we show that A is flankable and define a suitable flanking relation. Let
F be the relation in Q × Σ such that (q1, q2)

a9 if and only if q1
a9 in F1 and

q2
a→ q′2 in A2. That is, the symbol a is forbidden exactly in the case that was

ruled out in the transition relation of A. What is left to prove is that (A, F ) is
flanked, that is, we show that condition (F?) is correct:



– Assume u is accepted by A and u a is not. Since u a is not accepted, it must
be the case that q 6= >. Therefore there is a state q = (q1, q2) in A such that
q1 ∈ A1(u) and q2 ∈ A2(u). Also, since there is no transition with label a
from q, then necessarily q1

a9 in A1 and q2
a→ q′2. This is exactly the case

where (q, a) ∈ F , as required.
– Assume there is a reachable state q in A such that q ∈ A(u) and (q, a) ∈ F .

Since (q, a) ∈ F , we have q 6= > and therefore q = (q1, q2) with q1 ∈ A1(u),
q1

a9 in F1, q2 ∈ A2(u) and q2
a→ in F2. Next, we show by contradiction that

u a cannot be accepted by A. Indeed, if it was the case, then we would have
either q1

a→ in F1 or both u a /∈ A1 and u a /∈ A2.
ut

We give an example of the construction of the “quotient” FFA in Fig. 2.
If we look more closely at the construction used in Theorem 5 that defines an
automaton for the quotient of two FFA (A1, F1) and (A2, F2), we see that the
flanking relation F1 is used only to compute the flanking relation of the result.
Therefore, as a corollary, it is not difficult to prove that we can use the same
construction to build a quotient automaton for A1/A2 from an arbitrary NFA
A1 and a FFA (A2, F2). However the resulting automaton may not be flankable.

p0

p1

b

a

a b

(a) A1

q0

q1
a

a

b

b

(b) A2

p0, q0

p1, q1

p0, q1

>

b

b

a

b

a

a

a, b

(c) A1/A2

Fig. 2: Construction for the quotient of two FFA.

We can also prove that flankability is preserved by language union (see [2]):
given two FFA (A1, F1) and (A2, F2), we can compute a FFA (A, F ) that recog-
nizes the set of words accepted by A1 or by A2, denoted A1 ∪ A2. (Operations
corresponding to the Kleene star closure or to the adjunct of the union are not
interesting in our case.)

Even though the class of FFA enjoys interesting closure properties, there
are operations that, when applied to a FFA, may produce a result that is not
flankable. This is for example the case with “(non-injective) relabeling”, that
is the operation of applying a substitution over the symbols of an automaton.
The same can be observed if we consider an erasure operation, in which we
can replace all transitions with a given symbol by an ε-transition. Informally, it



appears that the property flankable can be lost when applying an operation that
increases the non-determinism of the transition relation.

We can prove this result by exhibiting a simple counterexample, see the
automaton in Fig. 3. This automaton with alphabet Σ = {a, b, c} is determinis-
tic, so we can easily define an associated flanking relation. For example we can
choose F = {(q1, a), (q1, b), (q1, c), (q2, a), (q2, c), (q3, a), (q3, b), (q3, c)}. However,
if we substitute the symbol c with a, we obtain the non-flankable automaton
described in Sect. 2 (see Fig. 1).

q0

q1 q2

q3

a
b c

b

Fig. 3: Example of a FFA not flankable after relabeling c to a.

5 Succinctness of Flanked Automata

In this section we show that a flankable automaton can be exponentially more
succinct than its equivalent minimal DFA. This is done by defining a language
over an alphabet of size 2n that can be accepted by a linear size FFA but
that corresponds to a minimal DFA with an exponential number of states. This
example is due to Colcombet.

At first sight, this result may seem quite counterintuitive. Indeed, even if a
flanked automata is built from a NFA, the combination of the automaton and the
flanking relation contains enough information to “encode” both a language and
its complement. This explains the good complexity results on testing language
inclusion for example. Therefore we could expect worse results concerning the
relative size of a FFA and an equivalent DFA.

Theorem 6. For every integer n, we can find a FFA (An, F ) such that An has
2n+2 states and that the language of An cannot be accepted by a DFA with less
than 2n states.

Proof. We consider two alphabets with n symbols: Πn = {1, . . . , n} and Θn =
{]1, ]2, . . . , ]n}. We define the language Ln over the alphabet Πn ∪ Θn as the
smallest set of words such that:

– all words in Π∗n are in Ln, that is all the words that do not contain a symbol
of the kind ]i;



– a word of the form (u ]i) is in Ln if and only if u is a word of Π∗n that contains
at least one occurrence of the symbol i. That is Ln contains all the words of
the form Π∗n · i ·Π∗n · ]i for all i ∈ 1..n. We denote Li

n the regular language
consisting of the words of the form Π∗n · i ·Π∗n · ]i.

Clearly the language Ln is the union of n+ 1 regular languages; L = Π∗n ∪L1
n ∪

· · · ∪Ln
n. It is also easy to prove that Ln is prefix-closed, since the set of prefixes

of the words in Li
n is exactly Π∗n for all i ∈ 1..n.

A DFA accepting the language Ln must have at least 2n different states.
Indeed it must be able to record the subset of symbols in Πn that have already
been seen before accepting ]i as a final symbol; to accept a word of the form u ]i
the DFA must know whether i has been seen in u for all possible i ∈ 1..n.

Next we define a flankable NFA An = (Qn, Πn ∪ Θn, En, {p}) with 2n + 2
states that can recognize the language Ln. We give an example of the construc-
tion in Fig. 4 for the case n = 3. The NFA An has a single initial state, p, and
a single sink state (a state without outgoing transitions), r. The set Qn also
contains two states, pi and qi, for every symbol i in Π.

The transition relation En is the smallest relation that contains the following
triplets for all i ∈ 1..n:

– the 3 transitions p
i→ qi; pi

i→ qi; and qi
i→ qi;

– for every index j 6= i, the 3 transitions p
j→ pi; pi

j→ pi; and qi
j→ qi;

– and the transition qi
]i→ r.

Intuitively, a transition from p to pi or qi will select non-deterministically
which final symbol ]i is expected at the end of the word (which sub-language Li

n

we try to recognize). Once a symbol in Θ has been seen—in one of the transition
of the kind qi

]i→ r—the automaton is stuck on the state r. It is therefore easy to
prove that An accepts the union of the languages Li

n and their prefixes.
Finally, the NFA An is flankable. It is enough to choose, for the flanking

relation, the smallest relation on Q×Θn such that pi
]i9 and p

]i9 for all i ∈ 1..n;
and such that r

a9 for all the symbols a ∈ Πn ∪Θn. Indeed, it is not possible to
accept the symbol ]i from the initial state, p, or from a word that can reach pi;
that is, it is not possible to extend a word without any occurrence of the symbol
i with the symbol ]i. Also, it is not possible to extend a word that can reach
the state r in An. It is easy to prove that this covers all the possible words not
accepted by An. ut

6 A Simple Use Case for FFA

In this section, we study a simple example related to controller synthesis in
a component-based system. We use our approach to compute a controller, G,
for a system obtained from the parallel composition of n copies of the same
components: (S1 ‖ · · · ‖ Sn). The architecture of this system is given in Fig. 5.
We use this example to study the performance of our approach when compared
to traditional techniques.



pp1

p2

p3

q1

q2

q3

r

2, 3

1, 3

1, 2

1
2

3

2, 3

1, 3

1, 2

1

2

3

1, 2, 3

1, 2, 3

1, 2, 3

]1
]2

]3

Fig. 4: Flankable NFA for the language L3.

Each component Sk can receive messages from two different channels: a public
channel i, shared by everyone, which represents the main input channel of the
whole system; and a private channel dk that can be used to disable the component
Sk. While the component is active, it can emit a message on its output channel,
rk, after receiving the two messages i1 and i2, in this order, over the channel i.
Once disabled, the component does not interact with its environment. The overall
behavior of the system is given by the automaton in Fig. 5-(c). We expect the
system to emit a message on channel o when it receives two messages on channel
i. Even though this behavior is very simple, the task of the controller G is made
difficult by the fact that it cannot listen on the channel i. The component G can
only observe the output of the components on the channels ri, for i ∈ 1..n, and
the disabling messages.

By definition, the semantics of the controller G is the biggest solution (for G)
of the language equation (S1 ‖ · · · ‖ Sn ‖ G) ⊆ A, hence: G = A/(S1 ‖ · · · ‖ Sn).

We have used this example to compare the time necessary to compute G
with two approaches; first using the tool MoTraS [17], then using a prototype
implementation based on FFA. MoTraS is a tool for modal transition systems
that implements all the standard operations for specification theories, such as
language quotient. The results are given in the table below, where we give the
performance when varying the number of components in the system (the value
of the parameter n). These results were obtained on a desktop computer with
8 GB of RAM.

n 7 8 9 100 200 500 1000 2000

MoTraS
times (s) 8 s 27 s 190 s — — — — —
(memory) (750 MB) (1.5 GB) (2 GB) — — — — —

FFA
time (s) <0.01 s <0.01 s <0.01 s 0.05 s 0.2 s 1.5 s 5.8 s 30 s
(memory) (1.3 MB) (1.3 MB) (1.3 MB) (2.4 MB) (3.5 MB) (6.5 MB) (13 MB) (23 MB)

We observe that it is not possible to compute G for values of n greater than
10 using a classical approach. These results are similar to what we obtained



(a) architecture of the system

dk i1

i2

dk

rk

dk

(b) specification of
the component Sk

i1

i2

o

(c) global specifica-
tion A

Fig. 5: Architecture and specification of a simple voting network.

using our own prototype implementation based on DFA. On the opposite, when
we use flanked automata, we are able to compute the quotient for up to several
thousand components.

7 Related Work

We can identify two main categories of related work. First, there is a large body
of work addressing the problem of solving language equations by computing the
quotient of two specifications. Then, we consider works concerned with finding
classes of finite state automata with good complexity properties.

Work on equation solving and quotient. Villa et al. [23, 22] consider language
equations for systems described using NFA. Actions labeling the transitions can
either be inputs, if they stem from the system environment, or outputs, when
they originate from the system. Composition may correspond to the synchronous
product with internalization of synchronized actions. In any case, the proposed
algorithms start with a determinization step, which is very expensive in practice.

In control theory [19], the plant is in most cases a DFA whose transitions can
be labeled by actions that are either declared as uncontrollable (the controller
cannot forbid them) or unobservable (the controller cannot see their occurrence).
Partial observation naturally led to consider nondeterministic plants [13].

A quotient operator has also been defined for modal specifications by one of
the authors [18]. In this setting, we can specify that it may or it must always



be the case that a trace can be extended with a certain action. The size of the
quotient is polynomial when modal specifications are deterministic, but there
is an exponential blow-up when this assumption is relaxed [5]. Quotients for
extensions of modal specifications to capture timed and quantitative languages
have also been recently considered [9, 3, 10].

Work on Finite State Automata. Several works have tried to find classes of
finite automata that retain the same complexity as DFA on some operations
while still being more succinct than the minimal DFA. One such example is the
class of Unambiguous Finite Automata (UFA) [20, 21]. Informally, an UFA is a
finite state automaton such that, if a word is accepted, then there is a unique
run which witnesses this fact, that is a unique sequence of states visited when
accepting the word. Like with DFA, the problems of universality and inclusion
for UFA is in polynomial-time. Unfortunately, UFA are difficult to complement.
(Actually, finding the exact complexity of complementation for UFA is still an
open problem [8].) Therefore they are not a good choice for computing quotients.

Another problem lies in the use of UFA for prefix-closed languages. In this
paper, we restrict our study to automata recognizing prefix-closed languages.
More precisely, we assume that all the states of the automaton are final (which
is equivalent). This restriction is very common when using NFA for the purpose
of system verification. For instance, Kripke structures used in model-checking
algorithms are often interpreted as finite state automata where all states are final.
It is easy to see that, with this restriction, an UFA is necessarily deterministic.

In the context of automata on infinite words, we can also mention the safety
automata of Isaak and Löding [14]. A safety (or looping) automaton can be
viewed as a Büchi automaton in which all states are accepting, except for pos-
sibly one rejecting sink state. For unambiguous safety automata, the problems
of inclusion, equivalence, and universality can be solved in polynomial time. We
show similar complexity results for our class of automata (on finite words). More-
over, a FFA can also be described, superficially, as a safety automaton without
the Büchi acceptance condition. Nonetheless, without the use of the flanking
relation, it is not clear how to define the quotient operation for safety automata,
especially if we want a compositional construction that does not involve deter-
minization.

It should be stressed that our problem is not made simpler by the choice
to restrict to prefix-closed languages. Indeed, all the classical complexity results
on NFA are still valid in this context. For instance, given a NFA A with all its
states final, checking the universality of A is PSPACE-hard [16]. Likewise for
the minimization problem. Indeed, there are examples of NFA with n states, all
final, such that the minimal equivalent DFA has 2n states. We provide such an
example in Sect. 5 of this paper. Intuitively, it is always possible to view a regular
language L, over the alphabet Σ, as the prefix closed-language containing words
of the form w ], where w is in L and ] is some new (terminal) symbol not used
in Σ.



8 Conclusion

We define a new subclass of NFA for prefix-closed languages called flanked au-
tomata. Intuitively, a FFA (A, F ) is a simple extension of NFA where we add in
the relation F extra information that can be used to check (non-deterministically)
whether a word is not accepted by A. Hence a FFA can be used both to test
whether a word is in the language associated with A or in its complement. As a
consequence, we obtain good complexity results for several interesting problems
such as universality and language inclusion. This idea of adding extra informa-
tion to encode both a language and its complement seems to be new. It is also
quite different from existing approaches used to define subclasses of NFA with
good complexity properties, like unambiguity for example.

Our work could be extended in several ways. First, we have implemented
all our proposed algorithms and constructions and have found that—for several
examples coming from the system verification domain—it was often easy to
define a flanking relation for a given NFA (even though we showed in Sect. 2
that it is not always possible). More experimental work is still needed, and in
particular the definition of a good set of benchmarks.

Next, we have used the powerset construction multiple times in our def-
initions. Most particularly as a way to test if a FFA is flanked or if a NFA is
flankable. Other constructions used to check language inclusion or simulation be-
tween NFA could be useful in this context like, for example, the antichain-based
method [1].

Finally, we still do not know how to compute a “succinct” flanked automaton
from a NFA that is not flankable. At the moment, our only solution is to com-
pute a minimal equivalent DFA (since DFA are always flankable). While it could
be possible to subsequently simplify the DFA—which is known to be computa-
tionally hard [15]—it would be interesting to have a more direct construction.

Acknowledgments. We thank Denis Kuperberg, Thomas Colcombet, and Jean-
Eric Pin for providing their expertise and insight and for suggesting the example
that led to the proof of Theorem 6.

References

1. Abdulla, P.A., Chen, Y.F., Holik, L., Mayr, R., Vojnar, T.: When simulation meets
antichains. In: TACAS. LNCS, vol. 6015. Springer (2010)

2. Avellaneda, F., Dal Zilio, S., Raclet, J.: On the complexity of flanked finite state
automata. CoRR abs/1509.06501 (2015)

3. Bauer, S.S., Fahrenberg, U., Juhl, L., Larsen, K.G., Legay, A., Thrane, C.R.:
Weighted modal transition systems. Formal Methods in System Design 42(2), 193–
220 (2013)

4. Bauer, S.S., David, A., Hennicker, R., Guldstrand Larsen, K., Legay, A., Nyman,
U., Wasowski, A.: Moving from specifications to contracts in component-based
design. In: FASE. LNCS, vol. 7212, pp. 43–58. Springer (2012)



5. Beneš, N., Delahaye, B., Fahrenberg, U., Křet́ınskỳ, J., Legay, A.: Hennessy-milner
logic with greatest fixed points as a complete behavioural specification theory. In:
CONCUR 2013–Concurrency Theory, pp. 76–90. Springer (2013)

6. Benveniste, A., Caillaud, B., Ferrari, A., Mangeruca, L., Passerone, R., Sofronis,
C.: Multiple viewpoint contract-based specification and design. In: Formal Methods
for Components and Objects. LNCS, vol. 5382, pp. 200–225. Springer (2008)

7. Benveniste, A., Caillaud, B., Nickovic, D., Passerone, R., Raclet, J.B., Reinkemeier,
P., Sangiovanni-Vincentelli, A., Damm, W., Henzinger, T., Larsen, K.G.: Contracts
for system design (2012)

8. Colcombet, T.: Forms of Determinism for Automata. In: Symposium on Theoretical
Aspects of Computer Science (STACS). vol. 14, pp. 1–23 (2012)

9. David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: Timed I/O au-
tomata: A complete specification theory for real-time systems. In: HSCC. pp. 91–
100. ACM (2010)

10. Fahrenberg, U., Ketnsk, J., Legay, A., Traonouez, L.M.: Compositionality for quan-
titative specifications. In: Formal Aspects of Component Software. LNCS, vol.
8997, pp. 306–324. Springer International Publishing (2015)

11. Gierds, C., Mooij, A.J., Wolf, K.: Reducing adapter synthesis to controller synthe-
sis. Services Computing, IEEE Transactions on 5(1), 72–85 (2012)

12. Henzinger, T.A., Qadeer, S., Rajamani, S.K.: You assume, we guarantee: Method-
ology and case studies. In: Computer Aided Verification, LNCS, vol. 1427, pp.
440–451. Springer (1998)

13. Heymann, M., Lin, F.: Discrete-event control of nondeterministic systems. Auto-
matic Control, IEEE Transactions on 43(1), 3–17 (1998)

14. Isaak, D., Löding, C.: Efficient inclusion testing for simple classes of unambiguous
ω-automata. Inf. Process. Lett. 112(14-15) (2012)

15. Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM Journal on
Computing 22(6), 1117–1141 (1993)

16. Kao, J.Y., Rampersad, N., Shallit, J.: On NFAs where all states are final, initial,
or both. Theoretical Computer Science 410(4749), 5010–5021 (2009)

17. Kret́ınský, J., Sickert, S.: Motras: A tool for modal transition systems and their ex-
tensions. In: 11th International Symposium Automated Technology for Verification
and Analysis (ATVA) (2013)

18. Raclet, J.B.: Residual for component specifications. ENTCS 215, 93–110 (2008),
workshop on Formal Aspects of Component Software (FACS)

19. Ramadge, P., Wonham, W.: The control of discrete event systems. Proceedings of
the IEEE 77(1), 81–98 (1989)

20. Schmidt, E.M.: Succinctness of Description of Context-Free, Regular and Unam-
biguous Languages. Ph.D. thesis, Cornell University (1978)

21. Stearns, R.E., Hunt III, H.B.: On the equivalence and containment problems for
unambiguous regular expressions, regular grammars and finite automata. SIAM
Journal on Computing 14(3), 598–611 (1985)

22. Villa, T., Petrenko, A., Yevtushenko, N., Mishchenko, A., Brayton, R.: Component-
based design by solving language equations. IEEE PP(99), 1–16 (2015)

23. Villa, T., Yevtushenko, N., Brayton, R.K., Mishchenko, A., Petrenko, A.,
Sangiovanni-Vincentelli, A.: The unknown component problem: theory and ap-
plications. Springer (2011)

24. Yellin, D., Strom, R.: Protocol specifications and component adaptors. ACM Trans-
actions on Programming Languages and Systems (TOPLAS) 19(2), 292–333 (1997)


